[1]

Zhao Z, Liu Z, Wang Y, Liang J, Song Y, et al. 2024. Increasing phosphorus ratios between overlying and surface water inhibits intracellular antibiotic resistance gene transformation in a large shallow lake. Journal of Hazardous Materials 480:135847

doi: 10.1016/j.jhazmat.2024.135847
[2]

Adyari B, Liao X, Yan X, Qiu Y, Grossart HP, et al. 2025. Anthropogenic gene dissemination in Tibetan Plateau rivers: sewage-driven spread, environmental selection, and microeukaryotic inter-trophic driving factors. Water Research 284:123887

doi: 10.1016/j.watres.2025.123887
[3]

Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, et al. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8:251−259

doi: 10.1038/nrmicro2312
[4]

Wang Y, Li H, Li Y, Guo H, Zhou J, et al. 2023. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. Science of The Total Environment 858:159913

doi: 10.1016/j.scitotenv.2022.159913
[5]

Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, et al. 2023. Bacterial resistance to antibacterial agents: mechanisms, control strategies, and implications for global health. Science of The Total Environment 860:160461

doi: 10.1016/j.scitotenv.2022.160461
[6]

Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, et al. 2020. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Critical Reviews in Microbiology 46:578−599

doi: 10.1080/1040841X.2020.1813687
[7]

Brito IL. 2021. Examining horizontal gene transfer in microbial communities. Nature Reviews Microbiology 19:442−453

doi: 10.1038/s41579-021-00534-7
[8]

Zhang H, Song J, Zheng Z, Li T, Shi N, et al. 2023. Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation. Water Research 233:119789

doi: 10.1016/j.watres.2023.119789
[9]

Lacroix B, Citovsky V, Winans SC, Collier RJ. 2016. Transfer of DNA from bacteria to eukaryotes. mBio 7:e00863-16

doi: 10.1128/mbio.00863-16
[10]

Bai S, Luo H, Tong H, Wu Y, Yuan Y. 2024. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnology Advances 76:108421

doi: 10.1016/j.biotechadv.2024.108421
[11]

Sun R, Yu P, Zuo P, Alvarez PJJ. 2021. Bacterial concentrations and water turbulence influence the importance of conjugation versus phage-mediated antibiotic resistance gene transfer in suspended growth systems. ACS Environmental Au 2:156−165

doi: 10.1021/acsenvironau.1c00027
[12]

Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. 2017. Extending the host range of bacteriophage particles for DNA transduction. Molecular Cell 66:721−728.e3

doi: 10.1016/j.molcel.2017.04.025
[13]

Popa O, Landan G, Dagan T. 2017. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. The ISME Journal 11:543−554

doi: 10.1038/ismej.2016.116
[14]

Li Y, Zhang Y, Liu X, Zhou X, Ye T, et al. 2025. Per- and polyfluoroalkyl substances exacerbate the prevalence of plasmid-borne antibiotic resistance genes by enhancing natural transformation, in vivo stability, and expression in bacteria. Water Research 272:122972

doi: 10.1016/j.watres.2024.122972
[15]

An T, Yin H, Cai Y, Chen M, Sun T, et al. 2024. Photocatalysis inhibits the emergence of multidrug-resistant bacteria in an antibiotic-resistant bacterial community in aquatic environments. Environmental Science & Technology 58:17937−17947

doi: 10.1021/acs.est.4c06752
[16]

Jin M, Liu L, Wang DN, Yang D, Liu WL, et al. 2020. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME Journal 14:1847−1856

doi: 10.1038/s41396-020-0656-9
[17]

Cai Y, Liu J, Li G, Wong PK, An T. 2022. Formation mechanisms of viable but nonculturable bacteria through induction by light-based disinfection and their antibiotic resistance gene transfer risk: a review. Critical Reviews in Environmental Science and Technology 52:3651−3688

doi: 10.1080/10643389.2021.1932397
[18]

Li YQ, Zhang CM, Liu Y. 2025. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: coeffect of oxidative stress and ion transport. Journal of Environmental Management 376:124430

doi: 10.1016/j.jenvman.2025.124430
[19]

Amin H, Ilangovan A, Costa TRD. 2021. Architecture of the outer-membrane core complex from a conjugative type IV secretion system. Nature Communications 12:6834

doi: 10.1038/s41467-021-27178-8
[20]

Pu Q, Fan XT, Sun AQ, Pan T, Li H, et al. 2021. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. Environment International 152:106453

doi: 10.1016/j.envint.2021.106453
[21]

Johnston C, Martin B, Fichant G, Polard P, Claverys JP. 2014. Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology 12:181−196

doi: 10.1038/nrmicro3199
[22]

Hasegawa H, Suzuki E, Maeda S. 2018. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Frontiers in Microbiology 9:2365

doi: 10.3389/fmicb.2018.02365
[23]

Miao S, Zhang Y, Wang Y, Zuo J. 2025. Profiling of extracellular antibiotic resistance genes during antibiotic production wastewater treatment processes: occurrence, transformation dynamics, and potential hosts. Journal of Hazardous Materials 496:139154

doi: 10.1016/j.jhazmat.2025.139154
[24]

Wu HY, Shi DY, Yang D, Yin J, Yang ZW, et al. 2020. Putative environmental levels of levofloxacin facilitate the dissemination of antibiotic-resistant Escherichia coli via plasmid-mediated transformability. Ecotoxicology and Environmental Safety 195:110461

doi: 10.1016/j.ecoenv.2020.110461
[25]

Lu J, Wang Y, Zhang S, Bond P, Yuan Z, et al. 2020. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Science of The Total Environment 713:136621

doi: 10.1016/j.scitotenv.2020.136621
[26]

von Wintersdorff CJH, Penders J, Niekerk JMv, Mills ND, Majumder S, et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology 7:173

doi: 10.3389/fmicb.2016.00173
[27]

Sun T, Cai Y, Huang P, Li G, Wong PK, et al. 2025. Microbial dormancy evolution in the environments: environmental adaptation and health risks of small colony variants. Critical Reviews in Environmental Science and Technology 55:1707−1729

doi: 10.1080/10643389.2025.2566174
[28]

Sun H, Li G, Nie X, Shi H, Wong PK, et al. 2014. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks. Environmental Science & Technology 48:9412−9419

doi: 10.1021/es502471h
[29]

Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, et al. 2018. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environment International 115:312−324

doi: 10.1016/j.envint.2018.03.044
[30]

Cai Y, Sun T, Li G, An T. 2021. Traditional and emerging water disinfection technologies challenging the control of antibiotic-resistant bacteria and antibiotic resistance genes. ACS ES& T Engineering 1:1046−1064

doi: 10.1021/acsestengg.1c00110
[31]

Li G, Liu J, Cai Y, An T. 2025. Regulatory formation of VBNC state antibiotic-resistant bacteria in water induced by sub-lethal photocatalysis and their resuscitation mechanism. Journal of Hazardous Materials 499:140041

doi: 10.1016/j.jhazmat.2025.140041
[32]

Ye C, Feng M, Chen Y, Zhang Y, Chen Q, et al. 2022. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: a lagging response. Water Research 221:118798

doi: 10.1016/j.watres.2022.118798
[33]

Sui Q, Chen Y, Yu D, Wang T, Hai Y, et al. 2019. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environment International 133:105183

doi: 10.1016/j.envint.2019.105183
[34]

Zhang S, Wang Y, Lu J, Yu Z, Song H, et al. 2021. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The ISME Journal 15:2969−2985

doi: 10.1038/s41396-021-00980-4
[35]

Wang W, Huang G, Yu JC, Wong PK. 2015. Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. Journal of Environmental Sciences 34:232−247

doi: 10.1016/j.jes.2015.05.003
[36]

Nie X, Li G, Gao M, Sun H, Liu X, et al. 2014. Comparative study on the photoelectrocatalytic inactivation of Escherichia coli K-12 and its mutant Escherichia coli BW25113 using TiO2 nanotubes as a photoanode. Applied Catalysis B: Environmental 147:562−570

doi: 10.1016/j.apcatb.2013.09.037
[37]

Wang W, Li G, Xia D, An T, Zhao H, et al. 2017. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environmental Science Nano 4:782−799

doi: 10.1039/C7EN00063D
[38]

Ji H, Cai Y, Wang Z, Li G, An T. 2022. Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability. Water Research 221:118808

doi: 10.1016/j.watres.2022.118808
[39]

Boyer HW, Roulland-Dussoix D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459−472

doi: 10.1016/0022-2836(69)90288-5
[40]

Song Y, Lee BR, Cho S, Cho YB, Kim SW, et al. 2015. Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing. FEMS Microbiology Letters 362:fnv073

doi: 10.1093/femsle/fnv073
[41]

Jeong H, Sim YM, Kim HJ, Lee SJ. 2017. Unveiling the hybrid genome structure of Escherichia coli RR1 (HB101 RecA+). Frontiers in Microbiology 8:585

doi: 10.3389/fmicb.2017.00585
[42]

Liao J, Chen Y, Huang H. 2019. Effects of CO2 on the transformation of antibiotic resistance genes via increasing cell membrane channels. Environmental Pollution 254:113045

doi: 10.1016/j.envpol.2019.113045
[43]

Bai C, Cai Y, Sun T, Li G, Wang W, et al. 2024. Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. Water Research 259:121837

doi: 10.1016/j.watres.2024.121837
[44]

Zheng Y, Cai Y, Sun T, Li G, An T. 2024. Response mechanisms of resistance in L-form bacteria to different target antibiotics: implications from oxidative stress to metabolism. Environment International 187:108729

doi: 10.1016/j.envint.2024.108729
[45]

Yin H, Chen X, Li G, Wang W, Wong PK, et al. 2021. Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation? Applied Catalysis B: Environmental 287:119977

doi: 10.1016/j.apcatb.2021.119977
[46]

Yin H, Li G, Chen X, Wang W, Wong PK, et al. 2020. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation. Applied Catalysis B: Environmental 269:118829

doi: 10.1016/j.apcatb.2020.118829
[47]

Chen X, Yin H, Li G, Wang W, Wong PK, et al. 2019. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: implications from oxidative stress and gene expression. Water Research 149:282−291

doi: 10.1016/j.watres.2018.11.019
[48]

Hong Y, Zeng J, Wang X, Drlica K, Zhao X. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 116:10064−10071

doi: 10.1073/pnas.1901730116
[49]

Chen T, Cai Y, Sun T, Liao W, Li G, et al. 2025. Response and formation mechanism of highly antibiotic-resistant dormant subpopulations in bioaerosol during aerosolizing from aquatic environments. Environmental Science & Technology 59:22145−22156

doi: 10.1021/acs.est.5c06017
[50]

Yin H, Chen X, Li G, Chen Y, Wang W, et al. 2019. Sub-lethal photocatalysis bactericidal technology cause longer persistence of antibiotic-resistance mutant and plasmid through the mechanism of reduced fitness cost. Applied Catalysis B: Environmental 245:698−705

doi: 10.1016/j.apcatb.2019.01.041
[51]

Manna B, Zhou X, Singhal N. 2025. ROS-induced stress promotes enrichment and emergence of antibiotic resistance in conventional activated sludge processes. Water Research 277:123366

doi: 10.1016/j.watres.2025.123366
[52]

Deatherage DE, Kepner JL, Bennett AF, Lenski RE, Barrick JE. 2017. Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proceedings of the National Academy of Sciences of the United States of America 114:E1904−E1912

doi: 10.1073/pnas.1616132114
[53]

Cooper VS, Bennett AF, Lenski RE. 2001. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution: International Journal of Organic Evolution 55:889−896

doi: 10.1111/j.0014-3820.2001.tb00606.x
[54]

Zhang YM, Rock CO. 2008. Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology 6:222−233

doi: 10.1038/nrmicro1839
[55]

Lee SN, Kim YM. 1992. Cloning and expression in Escherichia coli of a recA gene from Pseudomonas carboxydovorans. Molecules and Cells 2:287−291

doi: 10.1016/s1016-8478(23)13942-2
[56]

Liu Y, Cai Y, Li G, Wang W, Wong PK, et al. 2022. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. Water Research 218:118407

doi: 10.1016/j.watres.2022.118407
[57]

Guragain M, Lenaburg DL, Moore FS, Reutlinger I, Patrauchan MA. 2013. Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 54:350−361

doi: 10.1016/j.ceca.2013.08.004
[58]

González-Pleiter M, Leganés F, Fernández-Piñas F. 2017. Intracellular free Ca2+ signals antibiotic exposure in cyanobacteria. RSC Advances 7:35385−35393

doi: 10.1039/c7ra03001k
[59]

Bruni GN, Weekley RA, Dodd BJT, Kralj JM. 2017. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proceedings of the National Academy of Sciences of the United States of America 114:9445−9450

doi: 10.1073/pnas.1703084114
[60]

Schator D, Kumar NG, Chong SJU, Jung TK, Jedel E, et al. 2025. Cross-membrane cooperation among bacteria can facilitate intracellular pathogenesis. Nature Communications 16:7419

doi: 10.1038/s41467-025-62575-3
[61]

Ma H, Zhang L, Huang X, Ding W, Jin H, et al. 2019. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: high efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes. Chemical Engineering Journal 362:667−678

doi: 10.1016/j.cej.2019.01.042
[62]

Kabashima Y, Ogawa H, Nakajima R, Toyoshima C. 2020. What ATP binding does to the Ca2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca2+. Proceedings of the National Academy of Sciences of the United States of America 117:18448−18458

doi: 10.1073/pnas.2006027117
[63]

Wu Y, Yan H, Zhu X, Liu C, Chu C, et al. 2022. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer. Environmental Science & Technology 56:12573−12583

doi: 10.1021/acs.est.2c02701
[64]

Esparza-Perusquía M, Langner T, García-Cruz G, Feldbrügge M, Zavala G, et al. 2023. Deletion of the ATP20 gene in Ustilago maydis produces an unstable dimer of F1FO-ATP synthase associated with a decrease in mitochondrial ATP synthesis and a high H2O2 production. Biochimica et Biophysica Acta - Bioenergetics 1864:148950

doi: 10.1016/j.bbabio.2022.148950
[65]

Rao SPS, Alonso S, Rand L, Dick T, Pethe K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 105:11945−11950

doi: 10.1073/pnas.0711697105
[66]

Bollen C, Louwagie S, Deroover F, Duverger W, Khodaparast L, et al. 2025. Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery. Nature Communications 16:1046

doi: 10.1038/s41467-025-56387-8
[67]

Yang D, Zhao L, Rao L, Liao X. 2023. Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Research International 167:112710

doi: 10.1016/j.foodres.2023.112710
[68]

Teteneva N, Sanches-Medeiros A, Sourjik V. 2024. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. The ISME Journal 18:wrae096

doi: 10.1093/ismejo/wrae096
[69]

Niu A, Bian WP, Feng SL, Pu SY, Wei XY, et al. 2021. Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. Journal of Hazardous Materials 403:123604

doi: 10.1016/j.jhazmat.2020.123604
[70]

Benn G, Borrelli C, Prakaash D, Johnson ANT, Fideli VA, et al. 2024. OmpA controls order in the outer membrane and shares the mechanical load. Proceedings of the National Academy of Sciences of the United States of America 121:e2416426121

doi: 10.1073/pnas.2416426121
[71]

Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F, et al. 2011. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Molecular Cell 41:343−353

doi: 10.1016/j.molcel.2010.12.028
[72]

Sauvonnet N, Gounon P, Pugsley AP. 2000. PpdD type IV pilin of Escherichia coli K-12 can be assembled into pili in Pseudomonas aeruginosa. Journal of Bacteriology 182:848−854

doi: 10.1128/jb.182.3.848-854.2000
[73]

Martin JE, Le MT, Bhattarai N, Capdevila DA, Shen J, et al. 2019. A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus. Nucleic Acids Research 47:6885−6899

doi: 10.1093/nar/gkz494
[74]

Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, et al. 2011. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microbial Cell Factories 10:67

doi: 10.1186/1475-2859-10-67
[75]

Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, et al. 2020. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Research 48:4052−4065

doi: 10.1093/nar/gkaa156