[1]

Cai P, Zhao J, Zhang X, Zhang T, Yin G, et al. 2022. Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Applied Catalysis B: Environmental 306:121091

doi: 10.1016/j.apcatb.2022.121091
[2]

Hao C, Li T, Xie Y, Zhou JX, Chang F, et al. 2025. Synergistic catalysis of cobalt single atoms and clusters loaded on carbon film: enhancing peroxymonosulfate activation for degradation of norfloxacin. Advanced Functional Materials 35:2414036

doi: 10.1002/adfm.202414036
[3]

Shi L, Zhou C, Li Y, Zhang K, Zhang X, et al. 2025. Metal-free carbon aerogel for boosting norfloxacin degradation. Desalination 614:119195

doi: 10.1016/j.desal.2025.119195
[4]

Xie M, Tang J, Kong L, Lu W, Natarajan V, et al. 2019. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal 360:1213−1222

doi: 10.1016/j.cej.2018.10.130
[5]

Chen Z, Wang L, Xu H, Wen Q. 2020. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chemical Engineering Journal 389:124345

doi: 10.1016/j.cej.2020.124345
[6]

Chen X, Oh WD, Hu ZT, Sun YM, Webster RD, et al. 2018. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Applied Catalysis B: Environmental 225:243−257

doi: 10.1016/j.apcatb.2017.11.071
[7]

Chen F, Huang XT, Bai CW, Zhang ZQ, Duan PJ, et al. 2024. Advancements in heterogeneous activation of persulfates: exploring mechanisms, challenges in organic wastewater treatment, and innovative solutions. Chemical Engineering Journal 481:148789

doi: 10.1016/j.cej.2024.148789
[8]

Zou Y, Gu Y, Hui B, Yang X, Liu H, et al. 2020. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Advanced Energy Materials 10:1904147

doi: 10.1002/aenm.201904147
[9]

Zhong S, Pan J, Tian K, Qin J, Qing T, et al. 2023. Efficient degradation of p-chlorophenol by N, S-codoped biochar activated perxymonosulfate. Process Safety and Environmental Protection 169:437−446

doi: 10.1016/j.psep.2022.10.081
[10]

Yu X, Wang L, Shen X, Wu Y, Xu L, et al. 2025. New insight into the S and N co-doped poplar biochar for efficient BPA removal via peroxymonosulfate activation: S for adsorptive removal and N for catalytic removal. Separation and Purification Technology 354:128809

doi: 10.1016/j.seppur.2024.128809
[11]

Liu S, Lai C, Zhou X, Zhang C, Chen L, et al. 2022. Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: insight into the intrinsic relationship between defects and 1O2 generation. Water Research 221:118797

doi: 10.1016/j.watres.2022.118797
[12]

He M, Zhao P, Duan R, Xu S, Cheng G, et al. 2022. Insights on the electron transfer pathway of phenolic pollutant degradation by endogenous N-doped carbonaceous materials and peroxymonosulfate system. Journal of Hazardous Materials 424:127568

doi: 10.1016/j.jhazmat.2021.127568
[13]

Bono F, Strässle Zuniga SH, Amstad E. 2025. 3D printable κ-carrageenan-based granular hydrogels. Advanced Functional Materials 35:2413368

doi: 10.1002/adfm.202413368
[14]

Ding C, Liu Z, Pan S, Zhao C, Wang Z, et al. 2023. Activation of peroxydisulfate via Fe@sulfur-doped carbon-supported nanocomposite for degradation of norfloxacin: efficiency and mechanism. Chemical Engineering Journal 460:141729

doi: 10.1016/j.cej.2023.141729
[15]

Lv L, Huang S, Zhou C, Ma W. 2023. Biochar activated by potassium carbonate to load organic phase change material: better performance and environmental friendliness. Industrial Crops and Products 204:117184

doi: 10.1016/j.indcrop.2023.117184
[16]

Li Y, Zhou C, Zhang X, Hui B. 2024. Charcoal-based block catalyst boosts peroxymonosulfate activation for ciprofloxacin degradation. Separation and Purification Technology 329:125194

doi: 10.1016/j.seppur.2023.125194
[17]

Dung NT, Thao VD, Thao NP, Thuy CTM, Nam NH, et al. 2024. Turning peroxymonosulfate activation into singlet oxygen-dominated pathway for ofloxacin degradation by co-doping N and S into durian peel-derived biochar. Chemical Engineering Journal 483:149099

doi: 10.1016/j.cej.2024.149099
[18]

Deng J, Chen J, Zeng Y, Yang H, Li F, et al. 2024. Mechanistic insights into ultrafast degradation of electron-rich emerging pollutants by waste cyanobacteria resource utilization. Chemical Engineering Journal 499:155918

doi: 10.1016/j.cej.2024.155918
[19]

Ma W, Wang N, Du Y, Xu P, Sun B, et al. 2019. Human-hair-derived N, S-doped porous carbon: an enrichment and degradation system for wastewater remediation in the presence of peroxymonosulfate. ACS Sustainable Chemistry & Engineering 7:2718−2727

doi: 10.1021/acssuschemeng.8b05801
[20]

Wang Y, Tian D, Chu W, Li M, Lu X. 2019. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin. Separation and Purification Technology 212:536−544

doi: 10.1016/j.seppur.2018.11.051
[21]

Wang G, Nie X, Ji X, Quan X, Chen S, et al. 2019. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N. Environmental Science: Nano 6:399−410

doi: 10.1039/c8en01231h
[22]

Wang J, Wang S. 2021. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chemical Engineering Journal 411:128392

doi: 10.1016/j.cej.2020.128392
[23]

Hu Y, Chen D, Zhang R, Ding Y, Ren Z, et al. 2021. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. Journal of Hazardous Materials 419:126495

doi: 10.1016/j.jhazmat.2021.126495
[24]

Wang H, Guo W, Si Q, Liu B, Zhao Q, et al. 2021. Multipath elimination of bisphenol A over bifunctional polymeric carbon nitride/biochar hybrids in the presence of persulfate and visible light. Journal of Hazardous Materials 417:126008

doi: 10.1016/j.jhazmat.2021.126008
[25]

Pan J, Gao B, Duan P, Guo K, Xu X, et al. 2021. Recycling exhausted magnetic biochar with adsorbed Cu2+ as a cost-effective permonosulfate activator for norfloxacin degradation: Cu contribution and mechanism. Journal of Hazardous Materials 413:125413

doi: 10.1016/j.jhazmat.2021.125413
[26]

Wang H, Guo W, Liu B, Si Q, Luo H, et al. 2020. Sludge-derived biochar as efficient persulfate activators: sulfurization-induced electronic structure modulation and disparate nonradical mechanisms. Applied Catalysis B: Environmental 279:119361

doi: 10.1016/j.apcatb.2020.119361
[27]

Guo Y, Yan L, Li X, Yan T, Song W, et al. 2021. Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes. Science of The Total Environment 783:147102

doi: 10.1016/j.scitotenv.2021.147102
[28]

Wang YQ, Li K, Shang MY, Zhang YZ, Zhang Y, et al. 2023. A novel partially carbonized Fe3O4@PANI-p catalyst for tetracycline degradation via peroxymonosulfate activation. Chemical Engineering Journal 451:138655

doi: 10.1016/j.cej.2022.138655
[29]

Luo X, Shen M, Liu J, Ma Y, Gong B, et al. 2021. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation. Journal of Cleaner Production 294:126372

doi: 10.1016/j.jclepro.2021.126372
[30]

Zhou Z, Li H, Rao T, Wang C, Du J, et al. 2024. Efficient degradation of ciprofloxacin by peroxymonosulfate activated with co-loaded waste biomass: efficiency, stability, and mechanism. Journal of Environmental Chemical Engineering 12:114810

doi: 10.1016/j.jece.2024.114810
[31]

Luo R, Li M, Wang C, Zhang M, Nasir Khan MA, et al. 2019. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. Water Research 148:416−424

doi: 10.1016/j.watres.2018.10.087
[32]

Liu T, Xiao S, Li N, Chen J, Zhou X, et al. 2023. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nature Communications 14:2881

doi: 10.1038/s41467-023-38677-1
[33]

Wang C, Wang X, Wang H, Zhang L, Wang Y, et al. 2023. Low-coordinated Co-N3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer. Journal of Hazardous Materials 455:131622

doi: 10.1016/j.jhazmat.2023.131622
[34]

Shi L, Li Y, Dong H, Sun J, Xia C, et al. 2025. Heterostructural Cu2S@CuO nanoarrays enable peroxymonosulfate activation for sulfamethoxazole degradation through non-free radical pathways. Desalination 600:118527

doi: 10.1016/j.desal.2025.118527
[35]

Wu Q, Zhang Y, Liu H, Liu H, Tao J, et al. 2022. FexN produced in pharmaceutical sludge biochar by endogenous Fe and exogenous N doping to enhance peroxymonosulfate activation for levofloxacin degradation. Water Research 224:119022

doi: 10.1016/j.watres.2022.119022