[1]

Ageel HK, Harrad S, Abdallah MAE. 2022. Occurrence, human exposure, and risk of microplastics in the indoor environment. Environmental Science: Processes & Impacts 24:17−31

doi: 10.1039/d1em00301a
[2]

González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Muñoz R. 2021. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 262:128376

doi: 10.1016/j.chemosphere.2020.128376
[3]

Radbel J, Rebuli ME, Kipen H, Brigham E. 2024. Indoor air pollution and airway health. Journal of Allergy and Clinical Immunology 154:835−846

doi: 10.1016/j.jaci.2024.08.013
[4]

World Health Organization. 2024. Household air pollution. www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health

[5]

Liu N, Liu W, Deng F, Liu Y, Gao X, et al. 2023. The burden of disease attributable to indoor air pollutants in China from 2000 to 2017. The Lancet Planetary Health 7:e900−e911

doi: 10.1016/S2542-5196(23)00215-2
[6]

Fang L, Liu N, Liu W, Mo J, Zhao Z, et al. 2022. Indoor formaldehyde levels in residences, schools, and offices in China in the past 30 years: a systematic review. Indoor Air 32(10):e13141

doi: 10.1111/ina.13141
[7]

National Standard of the People's Republic of China. 2022. GB/T 18883-2022 indoor air quality standards. www.ndcpa.gov.cn/jbkzzx/c100201/common/content/content_1666357812062392320.html

[8]

Richardson SD, Ternes TA. 2018. Water analysis: emerging contaminants and current issues. Analytical Chemistry 90(1):398−428

doi: 10.1021/acs.analchem.7b04577
[9]

Kim S, Kim Y, Moon HB. 2020. Contamination and historical trends of legacy and emerging plasticizers in sediment from highly industrialized bays of Korea. Science of The Total Environment 765:142751

doi: 10.1016/j.scitotenv.2020.142751
[10]

Annamalai J, Namasivayam V. 2015. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environment International 76:78−97

doi: 10.1016/j.envint.2014.12.006
[11]

Zhou Y, Wang P, Li J, Luo R, Li J, et al. 2021. Effects of emerging organic contaminants on childhood obesity and neurodevelopment: a review. Journal of Environmental and Occupational Medicine 38:1001−1009 (in Chinese)

doi: 10.13213/j.cnki.jeom.2021.21115
[12]

Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, et al. 2011. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environment International 37(2):532−556

doi: 10.1016/j.envint.2010.11.007
[13]

Dou M, Wang L. 2023. A review on organophosphate esters: physiochemical properties, applications, and toxicities as well as occurrence and human exposure in dust environment. Journal of Environmental Management 325:116601

doi: 10.1016/j.jenvman.2022.116601
[14]

Wong KH, Durrani TS. 2017. Exposures to endocrine disrupting chemicals in consumer products—a guide for pediatricians. Current Problems in Pediatric and Adolescent Health Care 47(5):107−118

doi: 10.1016/j.cppeds.2017.04.002
[15]

Chen J, Wu J, Sherrell PC, Chen J, Wang H, et al. 2022. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Advanced Science 9(6):2103764

doi: 10.1002/advs.202103764
[16]

Wu Y, Romanak K, Bruton T, Blum A, Venier M. 2020. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere 251:126771

doi: 10.1016/j.chemosphere.2020.126771
[17]

Ji X, Liang J, Wang Y, Liu X, Li Y, et al. 2023. Synthetic antioxidants as contaminants of emerging concern in indoor environments: knowns and unknowns. Environmental Science & Technology 57(51):21550−21557

doi: 10.1021/acs.est.3c06487
[18]

Gardner CM, Hoffman K, Stapleton HM, Gunsch CK. 2021. Exposures to Semivolatile Organic Compounds in Indoor Environments and Associations with the Gut Microbiomes of Children. Environmental Science & Technology Letters 8(1):73−79

doi: 10.1021/acs.estlett.0c00776
[19]

Salthammer T. 2020. Emerging indoor pollutants. International Journal of Hygiene and Environmental Health 224:113423

doi: 10.1016/j.ijheh.2019.113423
[20]

Liu C, Liang L, Xu W, Ma Q. 2024. A review of indoor nitrous acid (HONO) pollution: measurement techniques, pollution characteristics, sources, and sinks. Science of The Total Environment 921:171100

doi: 10.1016/j.scitotenv.2024.171100
[21]

Wang J, Du W, Lei Y, Chen Y, Wang Z, et al. 2023. Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: current status and future implication. Environment International 175:107934

doi: 10.1016/j.envint.2023.107934
[22]

Bergh C, Torgrip R, Emenius G, Östman C. 2010. Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air 21(1):67−76

doi: 10.1111/j.1600-0668.2010.00684.x
[23]

Wilke O, Jann O, Brodner D. 2004. VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor Air 8:98−107

doi: 10.1111/j.1600-0668.2004.00314.x
[24]

Schreder ED, La Guardia MJ. 2014. Flame retardant transfers from U. S. households (dust and laundry wastewater) to the aquatic environment. Environmental Science & Technology 48(19):11575−11583

doi: 10.1021/es502227h
[25]

Alaee M, Arias P, Sjödin A, Bergman Å. 2003. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International 29(6):683−689

doi: 10.1016/s0160-4120(03)00121-1
[26]

Navruz-Varli S, Bilici S, Ari A, Ertürk-Ari P, Ilhan MN, et al. 2022. Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. Indoor Air 32(8):e13093

doi: 10.1111/ina.13093
[27]

Zhang L, Yuan W, Zhao W, Yang B, Jiao X, et al. 2024. Formation of Nitrosamines from the heterogeneous reaction of nitrous acid and organic amines in indoor environments. Environmental Science & Technology 58(42):18881−18891

doi: 10.1021/acs.est.4c05636
[28]

Chakraborty A, Adhikary S, Bhattacharya S, Dutta S, Chatterjee S, et al. 2023. Pharmaceuticals and personal care products as emerging environmental contaminants: prevalence, toxicity, and remedial approaches. ACS Chemical Health & Safety 30(6):361−388

doi: 10.1021/acs.chas.3c00071
[29]

Koelmans AA, Besseling E, Foekema EM. 2014. Leaching of plastic additives to marine organisms. Environmental Pollution 187:49−54

doi: 10.1016/j.envpol.2013.12.013
[30]

Vojta Š, Melymuk L, Klánová J. 2017. Changes in flame retardant and legacy contaminant concentrations in indoor air during building construction, furnishing, and use. Environmental Science & Technology 51(20):11891−11899

doi: 10.1021/acs.est.7b03245
[31]

Tao F, Abdallah MAE, Harrad S. 2016. Emerging and legacy flame retardants in UK indoor air and dust: evidence for replacement of PBDEs by emerging flame retardants? Environmental Science & Technology 50(23):13052−13061

doi: 10.1021/acs.est.6b02816
[32]

Liu Q, Li L, Zhang X, Saini A, Li W, et al. 2021. Uncovering global-scale risks from commercial chemicals in air. Nature 600:456−461

doi: 10.1038/s41586-021-04134-6
[33]

Wu J, Alipouri Y, Luo H, Zhong LX. 2022. Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: a critical review with particular focus on byproduct formation and modeling. Journal of Hazardous Materials 421:126766

doi: 10.1016/j.jhazmat.2021.126766
[34]

Fu Z, Xie HB, Elm J, Liu Y, Fu Z, et al. 2022. Atmospheric autoxidation of organophosphate esters. Environmental Science & Technology 56(11):6944−6955

doi: 10.1021/acs.est.1c04817
[35]

Wang C, Collins DB, Arata C, Goldstein AH, Mattila JM, et al. 2020. Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Science Advances 6(8):eaay8973

doi: 10.1126/sciadv.aay8973
[36]

Mattila JM, Arata C, Wang C, Katz EF, Abeleira A, et al. 2020. Dark chemistry during bleach cleaning enhances oxidation of organics and secondary organic aerosol production indoors. Environmental Science & Technology Letters 7(11):795−801

doi: 10.1021/acs.estlett.0c00573
[37]

Fu Z, Guo S, Yu Y, Xie HB, Li S, et al. 2024. Oxidation mechanism and toxicity evolution of linalool, a typical indoor volatile chemical product. Environment & Health 2(7):486−498

doi: 10.1021/envhealth.4c00033
[38]

Fahy WD, Gong Y, Wang S, Zhang Z, Li L, et al. 2024. Hydroxyl radical oxidation of chemical contaminants on indoor surfaces and dust. Proceedings of the National Academy of Sciences of the United States of America 121(45):e2414762121

doi: 10.1073/pnas.2414762121
[39]

Chang WH, Herianto S, Lee CC, Hung H, Chen HL. 2021. The effects of phthalate ester exposure on human health: a review. Science of The Total Environment 786:147371

doi: 10.1016/j.scitotenv.2021.147371
[40]

Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. 2018. Assessing human exposure to organic pollutants in the indoor environment. Angewandte Chemie International Edition 57(38):12228−12263

doi: 10.1002/anie.201711023
[41]

Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, et al. 2019. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA 182(6):1345−1347

doi: 10.1001/jama.2019.5586
[42]

Guo X, Wang L, Wang X, Li D, Wang H, et al. 2024. Discovery and analysis of microplastics in human bone marrow. Journal of Hazardous Materials 477:135266

doi: 10.1016/j.jhazmat.2024.135266
[43]

Oh J, Buckley JP, Kannan K, Pellizzari E, Miller RL, et al. 2025. Exposures to contemporary and emerging chemicals among children aged 2 to 4 years in the united states environmental influences on the child health outcome (ECHO) cohort. Environmental Science & Technology 59(27):13594−13610

doi: 10.1021/acs.est.4c13605
[44]

Zhang D, Liu X, Tu J, Xiao Q, Han L, et al. 2024. Mediating role of glucose-lipid metabolism in the association between the increased risk of coronary heart disease and exposure to organophosphate esters, phthalates, and polycyclic aromatic hydrocarbons. Environment & Health 2:170−179

doi: 10.1021/envhealth.3c00155
[45]

Yadav D, Rangabhashiyam S, Verma P, Singh P, Devi P, et al. 2021. Environmental and health impacts of contaminants of emerging concerns: recent treatment challenges and approaches. Chemosphere 272:129492

doi: 10.1016/j.chemosphere.2020.129492
[46]

Tang KHD, Li R, Li Z, Wang D. 2024. Health risk of human exposure to microplastics: a review. Environmental Chemistry Letters 22(3):1155−1183

doi: 10.1007/s10311-024-01727-1
[47]

Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, et al. 2011. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environmental Health Perspectives 120(2):290−295

doi: 10.1289/ehp.1103705
[48]

Wright ML, Starkweather AR, York TP. 2016. Mechanisms of the maternal exposome and implications for health outcomes. Advances in Nursing Science 39(2):E17−E30

doi: 10.1097/ans.0000000000000110
[49]

Kim S, Eom S, Kim HJ, Lee JJ, Choi G, et al. 2018. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2 years of age- CHECK cohort study. Science of The Total Environment 624:377−384

doi: 10.1016/j.scitotenv.2017.12.058