[1]

Bloom GS. 2014. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology 71:505−508

doi: 10.1001/jamaneurol.2013.5847
[2]

Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, et al. 2018. Role of Amyloid-β and Tau proteins in Alzheimer's disease: confuting the amyloid cascade. Journal of Alzheimer's Disease 64:S611−S631

doi: 10.3233/JAD-179935
[3]

Kim CK, Lee YR, Ong L, Gold M, Kalali A, et al. 2022. Alzheimer's disease: key insights from two decades of clinical trial failures. Journal of Alzheimer's Disease 87:83−100

doi: 10.3233/JAD-215699
[4]

De Strooper B, Karran E. 2016. The cellular phase of Alzheimer's disease. Cell 164:603−615

doi: 10.1016/j.cell.2015.12.056
[5]

Nirzhor SSR, Khan RI, Neelotpol S. 2018. The biology of glial cells and their complex roles in Alzheimer's disease: new opportunities in therapy. Biomolecules 8:93

doi: 10.3390/biom8030093
[6]

Ringel MS, Scannell JW, Baedeker M, Schulze U. 2020. Breaking Eroom's Law. Nature Reviews Drug Discovery 19:833−834

doi: 10.1038/d41573-020-00059-3
[7]

Alteri E, Guizzaro L. 2018. Be open about drug failures to speed up research. Nature 563:317−319

doi: 10.1038/d41586-018-07352-7
[8]

Li Y, Pereda Serras C, Blumenfeld J, Xie M, Hao Y, et al. 2025. Cell-type-directed network-correcting combination therapy for Alzheimer's disease. Cell 188:5516−5534.e18

doi: 10.1016/j.cell.2025.06.035
[9]

Coleman K, Tatonetti NP. 2025. Decoding Alzheimer's disease at the cellular level reveals promising combination therapy. Cell 188:5433−5435

doi: 10.1016/j.cell.2025.08.037