[1]

Ho CT, Zheng X, Li S. 2015. Tea aroma formation. Food Science and Human Wellness 4(1):9−27

doi: 10.1016/j.fshw.2015.04.001
[2]

Wan XC. 2003. Biochemistry of tea, (third edition). Beijing: China Agriculture Press (in Chinese)

[3]

Dong F, Zeng L, Yu Z, Li J, Tang J, et al. 2018. Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis) leaves. Molecules 23(10):2677

doi: 10.3390/molecules23102677
[4]

He Y, Li J, Mei H, Zhuang J, Zhao Z, et al. 2023. Effects of leaf-spreading on the volatile aroma components of green tea under red light of different intensities. Food Research International 168:112759

doi: 10.1016/j.foodres.2023.112759
[5]

Shi J, Wu W, Zhang Y, Baldermann S, Peng Q, et al. 2023. Comprehensive analysis of carotenoids constituents in purple-coloured leaves and carotenoid-derived aroma differences after processing into green, black, and white tea. LWT 173:114286

doi: 10.1016/j.lwt.2022.114286
[6]

Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. 2022. Flavor of tea (Camellia sinensis): a review on odorants and analytical techniques. Comprehensive Reviews in Food Science and Food Safety 21(5):3867−909

doi: 10.1111/1541-4337.12999
[7]

Qiu A, Wu S, Chen Y, Yu Z, Zhang D, et al. 2022. Dynamic changes of color, volatile, and non-volatile components during mechanized processing of green tea. Journal of Food Processing and Preservation 46(8):e16797

doi: 10.1111/jfpp.16797
[8]

Wang H, Hua J, Yu Q, Li J, Wang J, et al. 2021. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chemistry 363:130131

doi: 10.1016/j.foodchem.2021.130131
[9]

Wang H, Hua J, Jiang Y, Yang Y, Wang J, et al. 2020. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances. Food Research International 136:109479

doi: 10.1016/j.foodres.2020.109479
[10]

Shan X, Deng Y, Niu L, Chen L, Zhang S, et al. 2024. The influence of fixation temperature on Longjing tea taste profile and the underlying non-volatile metabolites changes unraveled by combined analyses of metabolomics and E-tongue. LWT 191:115560

doi: 10.1016/j.lwt.2023.115560
[11]

Shi Y, Zhu Y, Ma W, Shi J, Peng Q, et al. 2022. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Food Chemistry 394:133501

doi: 10.1016/j.foodchem.2022.133501
[12]

Kang S, Yan H, Zhu Y, Liu X, Lv HP, et al. 2019. Identification and quantification of key odorants in the world's four most famous black teas. Food Research International 121:73−83

doi: 10.1016/j.foodres.2019.03.009
[13]

Zhu Y, Yan H, Zhang ZF, Zeng JM, Zhang Y, et al. 2021. Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach. Food Chemistry 365:130615

doi: 10.1016/j.foodchem.2021.130615
[14]

Li P, Zhu Y, Lu M, Yang C, Xie D, et al. 2019. Variation patterns in the content of glycosides during green tea manufacturing by a modification-specific metabolomics approach: enzymatic reaction promoting an increase in the glycosidically bound volatiles at the pan firing stage. Food Chemistry 279:80−87

doi: 10.1016/j.foodchem.2018.11.148
[15]

Yan H, Lin Z, Li W, Gao J, Li P, et al. 2024. Unraveling the enantiomeric distribution of glycosidically bound linalool in teas (Camellia sinensis) and their acidolysis characteristics and pyrolysis mechanism. Journal of Agricultural and Food Chemistry 72(16):9337−50

doi: 10.1021/acs.jafc.4c00037
[16]

Wang MQ, Zhu Y, Zhang Y, Shi J, Lin Z, et al. 2020. Analysis of volatile compounds in "XihuLongjing" tea by stir bar sorptive extraction combine with gas chromatography-mass spectrometry. Food Science 41(4):140−48 (in Chinese)

doi: 10.7506/spkx1002-6630-20190325-322
[17]

Baba R, Kumazawa K. 2014. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. Journal of Agricultural and Food Chemistry 62(33):8308−13

doi: 10.1021/jf502308a
[18]

Wang J, Li M, Wang H, Huang W, Li F, et al. 2022. Decoding the specific roasty aroma Wuyi rock tea (Camellia sinensis: Dahongpao) by the sensomics approach. Journal of Agricultural and Food Chemistry 70(34):10571−83

doi: 10.1021/acs.jafc.2c02249
[19]

Liu S, Sun H, Ma G, Zhang T, Wang L, et al. 2022. Insights into flavor and key influencing factors of Maillard reaction products: a recent update. Frontiers in Nutrition 9:973677

doi: 10.3389/fnut.2022.973677
[20]

Wang J, Bi H, Li M, Wang H, Xue M, et al. 2023. Contribution of theanine to the temperature-induced changes in aroma profile of Wuyi rock tea. Food Research International 169:112860

doi: 10.1016/j.foodres.2023.112860
[21]

Guo X, Ho CT, Wan X, Zhu H, Liu Q, et al. 2021. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry 341:128230

doi: 10.1016/j.foodchem.2020.128230
[22]

Wang Q, Xie J, Wang L, Jiang Y, Deng Y, et al. 2024. Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC–MS, and GC × GC-TOFMS. Food Research International 187:114330

doi: 10.1016/j.foodres.2024.114330
[23]

Han Z, Zhu M, Wan X, Zhai X, Ho CT, et al. 2024. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Critical Reviews in Food Science and Nutrition 64(15):4904−20

doi: 10.1080/10408398.2022.2146653
[24]

Wang D, Yoshimura T, Kubota K, Kobayashi A. 2000. Analysis of glycosidically bound aroma precursors in tea leaves. 1. qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. Journal of Agricultural and Food Chemistry 48(11):5411−18

doi: 10.1021/jf000443m
[25]

Zhu Y, Shao CY, Lv HP, Zhang Y, Dai WD, et al. 2017. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). Journal of Chromatography A 1490:177−90

doi: 10.1016/j.chroma.2017.02.013
[26]

Polat A, Şat İG, Ilgaz Ş. 2018. Comparison of black tea volatiles depending on the grades and different drying temperatures. Journal of Food Processing and Preservation 42(7):e13653

doi: 10.1111/jfpp.13653
[27]

Zheng XQ, Li QS, Xiang LP, Liang YR. 2016. Recent advances in volatiles of teas. Molecules 21(3):338

doi: 10.3390/molecules21030338
[28]

Flaig M, Qi SC, Wei G, Yang X, Schieberle P. 2020. Characterisation of the key aroma compounds in a Longjing green tea infusion (Camellia sinensis) by the sensomics approach and their quantitative changes during processing of the tea leaves. European Food Research and Technology 246(12):2411−25

doi: 10.1007/s00217-020-03584-y
[29]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53(2):585−99

doi: 10.1016/j.foodres.2013.02.011
[30]

Deng WW, Wang R, Yang T, Jiang LN, Zhang ZZ. 2017. Functional characterization of salicylic acid carboxyl methyltransferase from Camellia sinensis, providing the aroma compound of methyl salicylate during the withering process of white tea. Journal of Agricultural and Food Chemistry 65(50):11036−45

doi: 10.1021/acs.jafc.7b04575
[31]

Su D, He JJ, Zhou YZ, Li YL, Zhou HJ. 2022. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chemistry 373:131587

doi: 10.1016/j.foodchem.2021.131587
[32]

Chen H, Zhang X, Jiang R, Ouyang J, Liu Q, et al. 2023. Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. LWT 179:114659

doi: 10.1016/j.lwt.2023.114659
[33]

Ni H, Jiang Q, Lin Q, Ma Q, Wang L, et al. 2021. Enzymatic hydrolysis and auto-isomerization during β-glucosidase treatment improve the aroma of instant white tea infusion. Food Chemistry 342:128565

doi: 10.1016/j.foodchem.2020.128565
[34]

Mosblech A, Feussner I, Heilmann I. 2009. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry 47(6):511−17

doi: 10.1016/j.plaphy.2008.12.011
[35]

Yin P, Kong YS, Liu PP, Wang JJ, Zhu Y, et al. 2022. A critical review of key odorants in green tea: identification and biochemical formation pathway. Trends in Food Science & Technology 129:221−32

doi: 10.1016/j.jpgs.2022.09.013
[36]

Ouyang W, Ning J, Zhu X, Jiang Y, Wang J, et al. 2024. UPLC-ESI-MS/MS analysis revealed the dynamic changes and conversion mechanism of non-volatile metabolites during green tea fixation. LWT 198:116010

doi: 10.1016/j.lwt.2024.116010
[37]

Wang AH, Ma HY, Zhang BH, Mo CY, Li EH, et al. 2022. Transcriptomic and metabolomic analyses provide insights into the formation of the peach-like aroma of Fragaria nilgerrensis Schlecht. fruits. Genes 13(7):1285

doi: 10.3390/genes13071285