[1]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293−96

doi: 10.1038/nature06592
[2]

Canfield DE, Glazer AN, Falkowski PG. 2010. The evolution and future of earth's nitrogen cycle. Science 330:192−96

doi: 10.1126/science.1186120
[3]

Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1:636−39

doi: 10.1038/ngeo325
[4]

Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ. 2018. Drinking water nitrate and human health: a review. Environmental Research 164:288−301

doi: 10.1016/j.envres.2018.02.037
[5]

Guo JH, Liu XJ, Zhang Y, Shen J, Han WX, et al. 2010. Significant acidification in major Chinese croplands. Science 327:1008−10

doi: 10.1126/science.1182570
[6]

Liu X, Zhang Y, Han W, Tang A, Shen J, et al. 2013. Enhanced nitrogen deposition over China. Nature 494:459−62

doi: 10.1038/nature11917
[7]

Mingolla S, Rosa L. 2025. Low-carbon ammonia production is essential for resilient and sustainable agriculture. Nature Food 6:610−21

doi: 10.1038/s43016-025-01125-y
[8]

Zhang C, Gu B, Liang X, Lam SK, Zhou Y, et al. 2024. The role of nitrogen management in achieving global sustainable development goals. Resources, Conservation and Recycling 201:107304

doi: 10.1016/j.resconrec.2023.107304
[9]

Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:248−56

doi: 10.1038/s41586-020-2780-0
[10]

Liu L, Xu W, Lu X, Zhong B, Guo Y, et al. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America 119:e2121998119

doi: 10.1073/pnas.2121998119
[11]

Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, et al. 2011. The European nitrogen assessment: sources, effects and policy perspectives. UK: Cambridge University Press. doi: www.cambridge.org/9781107006126

[12]

Du H, Cui J, Xu Y, Zhao Y, Chen L, et al. 2022. Nitrogen footprint of a recycling system integrated with cropland and livestock in the North China Plain. Plants 11:842

doi: 10.3390/plants11070842
[13]

Jin S, Zhang B, Wu B, Han D, Hu Y, et al. 2021. Decoupling livestock and crop production at the household level in China. Nature Sustainability 4(1):48−55

doi: 10.1038/s41893-020-00596-0
[14]

Ghimire S, Wang J, Fleck JR. 2021. Integrated crop-livestock systems for nitrogen management: a multi-scale spatial analysis. Animals 11:100

doi: 10.3390/ani11010100
[15]

Bai Z, Li X, Lu J, Wang X, Velthof GL, et al. 2017. Livestock housing and manure storage need to be improved in China. Environmental Science & Technology 51:8212−14

doi: 10.1021/acs.est.7b02672
[16]

Zhang TP, Yan TZ, Jin PZ, Lei QL, Lian HS, et al. 2022. Net anthropogenic nitrogen inputs and its influencing factors in three typical watersheds of China. Scientia Agricultura Sinica 55:4678−87 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.23.009
[17]

Yang LZ, Wu YH. 2022. Prevention and control of agricultural non-point source pollution in China. Beijing: Science Press (in Chinese)

[18]

Jeppesen E, He H, Søndergaard M, Lauridsen TL, Davidson TA, et al. 2025. Experimental evidence of the role of nitrogen for eutrophication in shallow lakes: a long-term climate effect mesocosm study. The Innovation 6:100756

doi: 10.1016/j.xinn.2024.100756
[19]

UNEP-DHI and UNEP 2016. Transboundary River Basins: status and trends. United Nations Environment Programme (UNEP), Nairobi

[20]

Hong B, Swaney DP, Mörth CM, Smedberg E, Hägg HE, et al. 2012. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecological Modelling 227:117−35

doi: 10.1016/j.ecolmodel.2011.12.002
[21]

de Wit M, Behrendt H. 1999. Nitrogen and phosphorus emissions from soil to surface water in the Rhine and Elbe basins. Water Science and Technology 39:109−16

doi: 10.1016/S0273-1223(99)00325-X
[22]

Korppoo M, Huttunen M, Huttunen I, Piirainen V, Vehviläinen B. 2017. Simulation of bioavailable phosphorus and nitrogen loading in an agricultural river basin in Finland using VEMALA v.3. Journal of Hydrology 549:363−73

doi: 10.1016/j.jhydrol.2017.03.050
[23]

Powley HR, Krom MD, Van Cappellen P. 2018. Phosphorus and nitrogen trajectories in the Mediterranean Sea (1950–2030): diagnosing basin-wide anthropogenic nutrient enrichment. Progress in Oceanography 162:257−70

doi: 10.1016/j.pocean.2018.03.003
[24]

Viaroli P, Soana E, Pecora S, Laini A, Naldi M, et al. 2018. Space and time variations of watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted river basin (Po river, Northern Italy). Science of The Total Environment 639:1574−87

doi: 10.1016/j.scitotenv.2018.05.233
[25]

Zhang S, Hou X, Wu C, Zhang C. 2020. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Science of The Total Environment 706:134489

doi: 10.1016/j.scitotenv.2019.134489
[26]

Chen X, Strokal M, Kroeze C, Supit I, Wang M, et al. 2020. Modeling the contribution of crops to nitrogen pollution in the Yangtze River. Environmental Science & Technology 54:11929−39

doi: 10.1021/acs.est.0c01333
[27]

Strokal M, Kroeze C, Wang M, Bai Z, Ma L. 2016. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): model description and results for China. Science of The Total Environment 562:869−88

doi: 10.1016/j.scitotenv.2016.04.071
[28]

Sharpley AN. 2018. Agriculture, nutrient management and water quality. In Reference Module in Life Sciences. Amsterdam, the Netherlands: Elsevier

[29]

Ator SW, Blomquist JD, Webber JS. Chanat JG. 2020. Factors driving nutrient trends in streams of the Chesapeake Bay watershed. Journal of Environmental Quality 49:812−34

doi: 10.1002/jeq2.20101
[30]

Zhao Z, Qin W, Bai Z, Ma L. 2019. Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agricultural Water Management 212:262−72

doi: 10.1016/j.agwat.2018.09.002
[31]

Yang J, Strokal M, Kroeze C, Ma L, Bai Z, et al. 2022. What is the pollution limit? Comparing nutrient loads with thresholds to improve water quality in Lake Baiyangdian. Science of The Total Environment 807:150710

doi: 10.1016/j.scitotenv.2021.150710
[32]

Tian J, Yuan Z, Mao X, Ma T. 2025. Quantifying natural and anthropogenic impacts on riverine total nitrogen concentration and load in the Yellow River Basin. Environmental Pollution 382:126641

doi: 10.1016/j.envpol.2025.126641
[33]

Li J, Li Z, Wang Q, Chen Y, Zhang X, Kahil T, et al. 2025. Shifting frontiers of nitrogen pollution: a multi-scale assessment of long-term anthropogenic nitrogen inputs across the Yellow River Basin. Ecological Indicators 178:114066

doi: 10.1016/j.ecolind.2025.114066
[34]

Jiang S, Hua H, Jarvie HP, Liu X, Zhang Y, et al. 2018. Enhanced nitrogen and phosphorus flows in a mixed land use basin: drivers and consequences. Journal of Cleaner Production 181:416−25

doi: 10.1016/j.jclepro.2018.02.005
[35]

Xu X, Zhang X, Zou Y, Chen T, Zhan J, et al. 2025. Integrated carbon and nitrogen management for cost-effective environmental policies in China. Science 388:1098−1103

doi: 10.1126/science.ads4105
[36]

Nilsson J. 1988. Critical loads for sulphur and nitrogen. In Air Pollution and Ecosystems, ed. Mathy P. Dordrecht: Springer. pp. 85–91 doi: 10.1007/978-94-009-4003-1_11

[37]

Olson RA, Frank KD, Grabouski PH, Rehm GW. 1982. Economic and agronomic impacts of varied philosophies of soil testing. Agronomy Journal 74:492−99

doi: 10.2134/agronj1982.00021962007400030022x
[38]

Croll BT, Hayes CR. 1988. Nitrate and water supplies in the United Kingdom. Environmental Pollution 50:163−87

doi: 10.1016/0269-7491(88)90190-X
[39]

European Union. 1991. Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Legislation. FAO, FAOLEX

[40]

Aber J, Mcdowell W, Nadelhoffer K, Magill A, Berntson G, et al. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience 48:921−34

doi: 10.2307/1313296
[41]

Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, et al. 2009. A safe operating space for humanity. Nature 461:472−75

doi: 10.1038/461472a
[42]

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

doi: 10.1126/science.1259855
[43]

Richardson K, Steffen W, Lucht W, Bendtsen J, Cornell SE, et al. 2023. Earth beyond six of nine planetary boundaries. Science Advances 9:eadh2458

doi: 10.1126/sciadv.adh2458
[44]

Yin Y, Zhao R, Yang Y, Meng Q, Ying H, et al. 2021. A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National Academy of Sciences of the United States of America 118:e2106576118

doi: 10.1073/pnas.2106576118
[45]

Velthof GL, Lesschen JP, Webb J, Pietrzak S, Miatkowski Z, et al. 2014. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Science of The Total Environment 468–469: 1225–33

doi: 10.1016/j.scitotenv.2013.04.058
[46]

Cui Z, Wang G, Yue S, Wu L, Zhang W, et al. 2014. Closing the N-use efficiency gap to achieve food and environmental security. Environmental Science & Technology 48:5780−87

doi: 10.1021/es5007127
[47]

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, et al. 2015. Managing nitrogen for sustainable development. Nature 528:51−59

doi: 10.1038/nature15743
[48]

Zhang X, Fan X, Ma W, Bai Z, Luo J, et al. 2024. Toward to agricultural green development by multi-objective zoning and nitrogen nutrient management: a case study in the Baiyangdian Basin, China. Frontiers of Agricultural Science and Engineering 11:140−54

doi: 10.15302/J-FASE-2023533
[49]

Zhang Q, Zhuang Y, Zhang L, Zhai L, Liu H, et al. 2025. Multi-objective water management strengthens synergistic control of nitrogen and phosphorus losses and CH4 emissions in paddies in the Yangtze River Basin. Journal of Environmental Management 394:127443

doi: 10.1016/j.jenvman.2025.127443
[50]

Zhao K, Gan Y, Li C, Guan X, Wang Z, Li F, et al. 2025. Regional pollution source apportionment and emission thresholds determination in Zunyi's major watersheds: implications for environmental management. Environmental Pollution 381:126640

doi: 10.1016/j.envpol.2025.126640
[51]

Kang X, Du M, Liu Q, Du H, Zou W, et al. 2023. City-level decoupling between livestock and crop production and its effect on fertilizer usage: Evidence from China. Science of The Total Environment 905:167115

doi: 10.1016/j.scitotenv.2023.167115
[52]

Wang Y, Cui X. 2024. Modeling and quantification of agricultural waste recycling for agricultural industrial structure optimization in a novelty multi-village industrial complex. Environmental Impact Assessment Review 106:107484

doi: 10.1016/j.eiar.2024.107484
[53]

Ma Y, Guo J, Zhao J. 2019. Distribution characteristics of crop climatic potential productivity and its response to climate change in the agro-pastoral ecotone of northern Shanxi. Chinese Journal of Ecology 38:818−27 (in Chinese)

[54]

Uwizeye A, de Boer IJM, Opio CI, Schulte RPO, Falcucci A, et al. 2020. Nitrogen emissions along global livestock supply chains. Nature Food 1:437−46

doi: 10.1038/s43016-020-0113-y
[55]

Dalgaard T, Hansen B, Hasler B, Hertel O, Hutchings NJ, et al. 2014. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters 9:115002

doi: 10.1088/1748-9326/9/11/115002
[56]

Rotz CA, Asem-Hiablie S, Place S, Thoma G. 2019. Environmental footprints of beef cattle production in the United States. Agricultural Systems 169:1−13

doi: 10.1016/j.agsy.2018.11.005
[57]

Chen L, Wang Y, Yang N, Zhu K, Yan X, Bai Z, et al. 2023. Improving crop-livestock integration in China using numerical experiments at catchment and regional scales. Agriculture, Ecosystems & Environment 341:108192

doi: 10.1016/j.agee.2022.108192
[58]

Food and Agriculture Organization of the United Nations (FAO). 2021. Global assessment of nitrogen use efficiency in agriculture: challenges and opportunities. FAO, Roma

[59]

Tisdale SL, Nelson WL, Beaton JD. 1966. Soil fertility and fertilizers. USA: Macmillan Publishing

[60]

Zhang Y, Ren W, Zhu K, Fu J, Wang W, et al. 2024. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: a global meta-analysis. Field Crops Research 306:109221

doi: 10.1016/j.fcr.2023.109221
[61]

Wang Y. 2014. Effects of several nitrification inhibitors on soil nitrogen transformation and wheat growth. Thesis. Shandong Agricultural University, Tai'an, China

[62]

Chen F, Zhang G. 2015. Research progress on "4R" nutrient management in agricultural sustainable development. Chinese Agricultural Science Bulletin 31:245−50 (in Chinese)

[63]

Zhu Y, Zhuang G, Wu S, Huang Z, Zhuang X. 2020. Research on the process and control technology of ammonia volatilization from farmland soil. Environmental Protection Science 46:88−96 (in Chinese)

[64]

Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America 106:3041−46

doi: 10.1073/pnas.0813417106
[65]

Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613:77−84

doi: 10.1038/s41586-022-05481-8
[66]

Sainju UM, Stevens WB, Evans RG, Iversen WM. 2013. Irrigation system and tillage effects on soil carbon and nitrogen fractions. Soil Science Society of America Journal 77:1225−34

doi: 10.2136/sssaj2012.0412
[67]

Bodera P, Chcialowski A. 2009. Immunomodulatory effect of probiotic bacteria. Recent Advances in Inflammation & Allergy Drug Discovery 3:58−64

doi: 10.2174/187221309787158461
[68]

Roberts SA, Xin H, Kerr BJ, Russell JR, Bregendahl K. 2007. Effects of dietary fiber and reduced crude protein on nitrogen balance and egg production in laying hens. Poultry Science 86:1716−25

doi: 10.1093/ps/86.8.1716
[69]

Li S, Wang X, Zhang X, Liu Z, Zhao H, et al. 2019. Effects of pig farm effluent application on ammonia emission nitrogen use and apparent balance in maize-wheat farmland. Chinese Journal of Eco-Agriculture 27:1502−14 (in Chinese)

[70]

Liu J, Bai Z, Cao Y, Zhang N, Zhao Z, et al. 2019. Effects of surface acidification of manure in livestock houses on ammonia emission. Chinese Journal of Eco-Agriculture 27:677−85 (in Chinese)

[71]

Liu J, Cao Y, Jiao Y, Wang X, Ma L. 2022. Study on ammonia emission reduction potential of composting technology in sealed reactors. Chinese Journal of Eco-Agriculture 30:1283−92 (in Chinese)

[72]

van Wijk D, Raben CR, Erbrink HJ, Heederik DJJ, Dohmen W. 2025. Effects of different ammonia emission reduction strategies from livestock farming on ambient ammonia concentrations in nature areas: a series of scenario analyses. Atmospheric Environment: X 28:100370

doi: 10.1016/j.aeaoa.2025.100370
[73]

Fu S, Meng F, Feng S, Yao C, Liu J, et al. 2025. Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China. Environmental Pollution 367:125597

doi: 10.1016/j.envpol.2024.125597
[74]

Jin XP, Bai ZH, Ma L. 2021. Regional nitrogen and phosphorus leaching mitigation strategies based on nutrient losses vulnerable zones in China. Chinese Journal of Eco-Agriculture 29:217−29 (in Chinese)

doi: 10.13930/j.cnki.cjea.200792
[75]

Li B, Liao H, Li K, Wang Y, Zhang L, et al. 2024. Unlocking nitrogen management potential via large-scale farming for air quality and substantial co-benefits. National Science Review 11(10):nwae324

doi: 10.1093/nsr/nwae324
[76]

Zhang XM, Ma WQ, Fan XW, Ma L, Bai ZH, et al. 2025. Optimal nitrogen management approach for green transformation of croplivestock mode at county level: a case study of Tangxian County. Chinese Journal of Eco-Agriculture 33:338−49 (in Chinese)

[77]

Huber R, Kreft C, Späti K, Finger R. 2024. Quantifying the importance of farmers' behavioral factors in ex-ante assessments of policies supporting sustainable farming practices. Ecological Economics 224:108303

doi: 10.1016/j.ecolecon.2024.108303
[78]

Xu P, Lin Y, Zheng J, Yang S, Luan S. 2018. Policies scenario analysis based on the farmers' individual behavior for nitrogen and phosphorous nutrient controlling of Pearl River Basin. Journal of Lake Sciences 30:44−56

doi: 10.18307/2018.0105
[79]

Swart R, Levers C, Davis JTM, Verburg PH. 2023. Meta-analyses reveal the importance of socio-psychological factors for farmers' adoption of sustainable agricultural practices. One Earth 6:1771−83

doi: 10.1016/j.oneear.2023.10.028
[80]

Shen Y, Ma J, Song M, Lai X. 2024. Does the pilot trading of carbon emission rights cause domestic or international pollution transfer? Journal of Environmental Management 370:122538

doi: 10.1016/j.jenvman.2024.122538