[1]

Jiang X, Yu J, Ye J, Jia W, Xu W, et al. 2023. A deep learning-based method for pediatric congenital heart disease detection with seven standard views in echocardiography. World Journal of Pediatric Surgery 6:e000580

doi: 10.1136/wjps-2023-000580
[2]

Yang Z, Wang D, Zhou F, Song D, Zhang Y, et al. 2024. Understanding natural language: potential application of large language models to ophthalmology. Asia-Pacific Journal of Ophthalmology 13:100085

doi: 10.1016/j.apjo.2024.100085
[3]

Pur DR, Lee-Wing N, Bona MD. 2023. The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefe's Archive for Clinical and Experimental Ophthalmology 261(6):1743−55

doi: 10.1007/s00417-022-05972-4
[4]

Zuo G, Wang R, Wan C, Zhang Z, Zhang S, et al. 2024. Unveiling the evolution of virtual reality in medicine: a bibliometric analysis of research hotspots and trends over the past 12 years. Healthcare 12(13):1266

doi: 10.3390/healthcare12131266
[5]

Joseph S, Selvaraj J, Mani I, Kumaragurupari T, Shang X, et al. 2024. Diagnostic accuracy of artificial intelligence-based automated diabetic retinopathy screening in real-world settings: a systematic review and meta-analysis. American Journal of Ophthalmology 263:214−30

doi: 10.1016/j.ajo.2024.02.012
[6]

Fazlollahi AM, Bakhaidar M, Alsayegh A, Yilmaz R, Winkler-Schwartz A, et al. 2022. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial. JAMA Network Open 5:e2149008

doi: 10.1001/jamanetworkopen.2021.49008
[7]

Jin K, Ye J. 2022. Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. Advances in Ophthalmology Practice and Research 2:100078

doi: 10.1016/j.aopr.2022.100078
[8]

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. 2021. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of Clinical Epidemiology 134:103−12

doi: 10.1016/j.jclinepi.2021.02.003
[9]

Wu D, Xiang Y, Wu X, Yu T, Huang X, et al. 2020. Artificial intelligence-tutoring problem-based learning in ophthalmology clerkship. Annals of Translational Medicine 8:700

doi: 10.21037/atm.2019.12.15
[10]

Fang Z, Xu Z, He X, Han W. 2022. Artificial intelligence-based pathologic myopia identification system in the ophthalmology residency training program. Frontiers in Cell and Developmental Biology 10:1053079

doi: 10.3389/fcell.2022.1053079
[11]

Muntean GA, Groza A, Marginean A, Slavescu RR, Steiu MG, et al. 2023. Artificial intelligence for personalised ophthalmology residency training. Journal of Clinical Medicine 12(5):1825

doi: 10.3390/jcm12051825
[12]

Laupichler MC, Hadizadeh DR, Wintergerst MWM, von der Emde L, Paech D, et al. 2022. Effect of a flipped classroom course to foster medical students' AI literacy with a focus on medical imaging: a single group pre-and post-test study. BMC Medical Education 22:803

doi: 10.1186/s12909-022-03866-x
[13]

Han R, Yu W, Chen H, Chen Y. 2022. Using artificial intelligence reading label system in diabetic retinopathy grading training of junior ophthalmology residents and medical students. BMC Medical Education 22:258

doi: 10.1186/s12909-022-03272-3
[14]

Sonmez SC, Sevgi M, Antaki F, Huemer J, Keane PA. 2024. Generative artificial intelligence in ophthalmology: current innovations, future applications and challenges. The British Journal of Ophthalmology 108:1335−40

doi: 10.1136/bjo-2024-325458
[15]

Xu Q, Han J, Song X, Zhao Y, Wu L, et al. 2022. The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Frontiers in Public Health 10:1025271

doi: 10.3389/fpubh.2022.1025271
[16]

Yu F, Silva Croso G, Kim TS, Song Z, Parker F, et al. 2019. Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Network Open 2:e191860

doi: 10.1001/jamanetworkopen.2019.1860
[17]

Al Hajj H, Lamard M, Conze PH, Roychowdhury S, Hu X, et al. 2019. CATARACTS: challenge on automatic tool annotation for cataRACT surgery. Medical Image Analysis 52:24−41

doi: 10.1016/j.media.2018.11.008
[18]

Tabuchi H, Engelmann J, Maeda F, Nishikawa R, Nagasawa T, et al. 2024. Using artificial intelligence to improve human performance: efficient retinal disease detection training with synthetic images. The British Journal of Ophthalmology 108:1430−35

doi: 10.1136/bjo-2023-324923
[19]

Upadhyaya S, Agarwal A, Rengaraj V, Srinivasan K, Newman Casey PA, et al. 2022. Validation of a portable, non-mydriatic fundus camera compared to gold standard dilated fundus examination using slit lamp biomicroscopy for assessing the optic disc for glaucoma. Eye 36:441−47

doi: 10.1038/s41433-021-01485-2
[20]

Song S, He G, Huang D, Li X, Wu Z, et al. 2024. Efficacy of pars plana vitrectomy combined with internal limiting membrane peeling and gas tamponade for treating myopic foveoschisis: a meta-analysis. BMC Ophthalmology 24:293

doi: 10.1186/s12886-024-03534-2
[21]

Gurnani B, Kaur K. 2024. Leveraging ChatGPT for ophthalmic education: a critical appraisal. European Journal of Ophthalmology 34:323−27

doi: 10.1177/11206721231215862
[22]

Tsai AS, Chou HD, Ling XC, Al-Khaled T, Valikodath N, et al. 2022. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF). Progress in Retinal and Eye Research 88:101018

doi: 10.1016/j.preteyeres.2021.101018
[23]

Al-Khaled T, Mikhail M, Jonas KE, Wu WC, Anzures R, et al. 2019. Training of residents and fellows in retinopathy of prematurity around the world: an international web-based survey. Journal of Pediatric Ophthalmology and Strabismus 56:282−87

doi: 10.3928/01913913-20190717-01
[24]

Raman R, Srinivasan S, Virmani S, Sivaprasad S, Rao C, et al. 2019. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye 33:97−109

doi: 10.1038/s41433-018-0269-y
[25]

Liu SJ, Feng XJ, Wang JS, Xiao ZQ, Cheng PS. 2021. Market analysis and countermeasures of nucleic acid drugs in China. China Biotechnology 41(7):99−109 (in Chinese)

doi: 10.13523/j.cb.2103061
[26]

Watson SL, Le DT. 2024. Corneal neuropathic pain: a review to inform clinical practice. Eye 38:2350−58

doi: 10.1038/s41433-024-03060-x
[27]

Peng J, Xie X, Lu Z, Xu Y, Xie M, et al. 2024. Generative adversarial networks synthetic optical coherence tomography images as an education tool for image diagnosis of macular diseases: a randomized trial. Frontiers in Medicine 11:1424749

doi: 10.3389/fmed.2024.1424749
[28]

Guo DL, Xu FB, Gong YJ, Xiang YF, Li Q, et al. 2022. Research progress and application status of artificial intelligence in fundus image analysis. Journal of Ophthalmology 37(3):185−93 (in Chinese)

doi: 10.3978/j.issn.1000-4432.2022.03.07
[29]

Liu R, Li Q, Xu F, Wang S, He J, et al. 2022. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Biomedical Engineering Online 21:47

doi: 10.1186/s12938-022-01018-2
[30]

Succar T, Grigg J R. 2023. The science of virtual teaching and learning for ophthalmology medical education. In In their own words: what scholars and teachers want you to know about why and how to apply the science of learning in your academic setting, eds. Overson CE, Hakala CM, Kordonowy LL, Benassi VA. Society for the Teaching of Psychology. pp. 505−10 https://teachpsych.org/ebooks/itow

[31]

Faes L, Fu DJ, Huemer J, Kern C, Wagner SK, et al. 2021. A virtual-clinic pathway for patients referred from a national diabetes eye screening programme reduces service demands whilst maintaining quality of care. Eye 35:2260−69

doi: 10.1038/s41433-020-01240-z
[32]

Bakshi SK, Lin SR, Ting DSW, Chiang MF, Chodosh J. 2021. The era of artificial intelligence and virtual reality: transforming surgical education in ophthalmology. The British Journal of Ophthalmology 105:1325−28

doi: 10.1136/bjophthalmol-2020-316845
[33]

Chia MA, Turner AW. 2022. Benefits of integrating telemedicine and artificial intelligence into outreach eye care: stepwise approach and future directions. Frontiers in Medicine 9:835804

doi: 10.3389/fmed.2022.835804
[34]

Long E, Chen J, Wu X, Liu Z, Wang L, et al. 2020. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. NPJ Digital Medicine 3:112

doi: 10.1038/s41746-020-00319-x
[35]

Ferro Desideri L, Rutigliani C, Corazza P, Nastasi A, Roda M, et al. 2022. The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. Journal of Optometry 15:S50−S57

doi: 10.1016/j.optom.2022.08.001
[36]

Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. 2018. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine 1:39

doi: 10.1038/s41746-018-0040-6
[37]

Thakoor KA, Yao J, Bordbar D, Moussa O, Lin W, et al. 2022. A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers. Scientific Reports 12:2585

doi: 10.1038/s41598-022-06273-w
[38]

Al-Aswad LA, Kapoor R, Chu CK, Walters S, Gong D, et al. 2019. Evaluation of a deep learning system for identifying glaucomatous optic neuropathy based on color fundus photographs. Journal of Glaucoma 28:1029−34

doi: 10.1097/IJG.0000000000001319
[39]

von der Emde L, Künzel SH, Pfau M, Morelle O, Liermann Y, et al. 2024. Use of artificial intelligence for recognition of biomarkers in intermediate age-related macular degeneration. Die Ophthalmologie 121:609−15

doi: 10.1007/s00347-024-02078-6
[40]

Chang P, von der Emde L, Pfau M, Künzel S, Fleckenstein M, et al. 2024. Use of artificial intelligence in geographic atrophy in age-related macular degeneration. Die Ophthalmologie 121:616−22

doi: 10.1007/s00347-024-02080-y
[41]

Succar T, Grigg J, Beaver HA, Lee AG. 2020. Advancing ophthalmology medical student education: international insights and strategies for enhanced teaching. Survey of Ophthalmology 65:263−71

doi: 10.1016/j.survophthal.2019.08.006
[42]

Valikodath NG, Cole E, Ting DSW, Campbell JP, Pasquale LR, et al. 2021. Impact of artificial intelligence on medical education in ophthalmology. Translational Vision Science & Technology 10:14

doi: 10.1167/tvst.10.7.14
[43]

Peng Z, Wu CR, Zhang X. 2021. Application status and research progress of virtual reality technology in ophthalmology. Chinese Journal of Optometry & Visual Science 23(8):631−35 (in Chinese)

doi: 10.3760/cma.j.cn115909-20200728-00313
[44]

Dyer E, Swartzlander BJ, Gugliucci MR. 2018. Using virtual reality in medical education to teach empathy. Journal of the Medical Library Association 106:498−500

doi: 10.5195/jmla.2018.518
[45]

Carr L, McKechnie T, Hatamnejad A, Chan J, Beattie A. 2024. Effectiveness of the Eyesi Surgical Simulator for ophthalmology trainees: systematic review and meta-analysis. Canadian Journal of Ophthalmology 59:172−80

doi: 10.1016/j.jcjo.2023.03.014
[46]

Joo HJ, Jeong HY. 2020. A study on eye-tracking-based interface for VR/AR education platform. Multimedia Tools and Applications 79:16719−30

doi: 10.1007/s11042-019-08327-0
[47]

Tu P, Ye H, Shi H, Young J, Xie M, et al. 2025. Phase-specific augmented reality guidance for microscopic cataract surgery using spatiotemporal fusion network. Information Fusion 113:102604

doi: 10.1016/j.inffus.2024.102604
[48]

Alwadani F, Morsi MS. 2012. PixEye virtual reality training has the potential of enhancing proficiency of laser trabeculoplasty performed by medical students: a pilot study. Middle East African Journal of Ophthalmology 19:120−22

doi: 10.4103/0974-9233.92127
[49]

Reipschläger P, Dachselt R. 2019. DesignAR: immersive 3D-modeling combining augmented reality with interactive displays. Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces, Daejeon Republic of Korea, 10−13, November, 2019. New York, USA: Association for Computing Machinery (ACM). pp. 29−41 doi: 10.1145/3343055.3359718

[50]

Liu XF, Sun XY, Zhu X. 2021. Current situation and challenges facing artificial intelligence in its application in new drug research and development. Progress in Pharmaceutical Sciences 45(7):494−501 (in Chinese)

[51]

Dong L, He W, Zhang R, Ge Z, Wang YX, et al. 2022. Artificial intelligence for screening of multiple retinal and optic nerve diseases. JAMA Network Open 5:e229960

doi: 10.1001/jamanetworkopen.2022.9960
[52]

Wei WB, Dong L, Zhang RH, Wang HY. 2024. Preliminary exploration of the application of artificial intelligence generative adversarial networks in ophthalmology clinical teaching. Ophthalmology 33(3):223−25 (in Chinese)

doi: 10.13281/j.cnki.issn.1004-4469.2024.03.011
[53]

Krause J, Gulshan V, Rahimy E, Karth P, Widner K, et al. 2018. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125:1264−72

doi: 10.1016/j.ophtha.2018.01.034
[54]

Hood DC, La Bruna S, Tsamis E, Thakoor KA, Rai A, et al. 2022. Detecting glaucoma with only OCT: implications for the clinic, research, screening, and AI development. Progress in Retinal and Eye Research 90:101052

doi: 10.1016/j.preteyeres.2022.101052
[55]

Gunasekeran DV, Ting DSW, Tan GSW, Wong TY. 2020. Artificial intelligence for diabetic retinopathy screening, prediction and management. Current Opinion in Ophthalmology 31(5):357−65

doi: 10.1097/ICU.0000000000000693
[56]

Wang XH, Bryan S, Cheng W. 2021. The application of artificial intelligence in ophthalmic medical management: challenges and prospects. Journal of Ophthalmology 36(1):50−54 (in Chinese)

doi: 10.3978/j.issn.1000-4432.2021.01.23
[57]

Wang YX, Xue CC, Li JJ. 2021. Main problems and strategies in ophthalmic artificial intelligence research. Ophthalmology 30(2):81−84 (in Chinese)

doi: 10.13281/j.cnki.issn.1004-4469.2021.02.001
[58]

Li Z, Guo C, Lin D, Nie D, Zhu Y, et al. 2021. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images. The British Journal of Ophthalmology 105:1548−54

doi: 10.1136/bjophthalmol-2020-317327
[59]

Alhaidry HM, Fatani B, Alrayes JO, Almana AM, Alfhaed NK. 2023. ChatGPT in dentistry: a comprehensive review. Cureus 15:e38317

doi: 10.7759/cureus.38317
[60]

Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, et al. 2019. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health 1:e271−97

doi: 10.1016/S2589-7500(19)30123-2
[61]

Abdullah YI, Schuman JS, Shabsigh R, Caplan A, Al-Aswad LA. 2021. Ethics of artificial intelligence in medicine and ophthalmology. Asia-Pacific Journal of Ophthalmology 10(3):289−98

doi: 10.1097/APO.0000000000000397
[62]

Zisimopoulos O, Flouty E, Luengo I, Giataganas P, Nehme J, et al. 2018. DeepPhase: surgical phase recognition in CATARACTS videos. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, eds. Frangi A, Schnabel J, Davatzikos C, Alberola-López C, Fichtinger G. Cham: Springer, pp. 265−72 doi: 10.1007/978-3-030-00937-3_31