[1]

Vujosevic S, Aldington SJ, Silva P, Hernández C, Scanlon P, et al. 2020. Screening for diabetic retinopathy: new perspectives and challenges. The Lancet Diabetes & Endocrinol 8:337−47

doi: 10.1016/S2213-8587(19)30411-5
[2]

Bressler SB, Ayala AR, Bressler NM, Melia M, Qin H, et al. 2016. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol 134:278−85

doi: 10.1001/jamaophthalmol.2015.5346
[3]

Szeto SK, Lai TY, Vujosevic S, Sun JK, Sadda SR, et al. 2024. Optical coherence tomography in the management of diabetic macular oedema. Progress in Retinal and Eye Research 98:101220

doi: 10.1016/j.preteyeres.2023.101220
[4]

Baek J, He Y, Emamverdi M, Mahmoudi A, Nittala MG, et al. 2024. Prediction of long-term treatment outcomes for diabetic macular edema using a generative adversarial network. Translational Vision Science & Technology 13:4

doi: 10.1167/tvst.13.7.4
[5]

Alryalat S, Al-Antary M, Arafa Y, Azad B, Boldyreff C, et al. 2022. Deep learning prediction of response to anti-VEGF among diabetic macular edema patients: treatment response analyzer system (TRAS). Diagnostics 12:312

doi: 10.3390/diagnostics12020312
[6]

Meng Z, Chen Y, Li H, Zhang Y, Yao X, et al. 2024. Machine learning and optical coherence tomography-derived radiomics analysis to predict persistent diabetic macular edema in patients undergoing anti-VEGF intravitreal therapy. Journal of Translational Medicine 22:358

doi: 10.1186/s12967-024-05141-7
[7]

Rasti R, Allingham MJ, Mettu PS, Kavusi S, Govind K, et al. 2020. Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema. Biomedical Optics Express 11:1139−52

doi: 10.1364/boe.379150
[8]

Cao J, You K, Jin K, Lou L, Wang Y, et al. 2021. Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method. Acta Ophthalmologica 99:e19−e27

doi: 10.1111/aos.14514
[9]

Xu F, Liu S, Xiang Y, Hong J, Wang J, et al. 2022. Prediction of the short-term therapeutic effect of anti-VEGF therapy for diabetic macular edema using a generative adversarial network with OCT Images. Journal of Clinical Medicine 11:2878

doi: 10.3390/jcm11102878
[10]

Xie H, Huang S, Liu Q, Xiang Y, Xu F, et al. 2022. The Fundus structural and functional predictions of DME patients after anti-VEGF treatments. Frontiers in Endocrinology 13:865211

doi: 10.3389/fendo.2022.865211
[11]

Liu B, Zhang B, Hu Y, Cao D, Yang D, et al. 2021. Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning. Annals of Translational Medicine 9:43

doi: 10.21037/atm-20-1431
[12]

Zhang Y, Xu F, Lin Z, Wang J, Huang C, et al. 2022. Prediction of visual acuity after anti-VEGF therapy in diabetic macular edema by machine learning. Journal of Diabetes Research 2022:5779210

doi: 10.1155/2022/5779210
[13]

Wang Y, Wang Y, Liu X, Cui W, Jin P, et al. 2024. Attention-enhanced guided multimodal and semi-supervised networks for visual acuity (VA) prediction after anti-VEGF therapy. Electronics 13:3701

doi: 10.3390/electronics13183701
[14]

Sil Kar S, Sevgi DD, Dong V, Srivastava SK, Madabhushi A, et al. 2021. Multi-compartment spatially-derived radiomics from optical coherence tomography predict anti-VEGF treatment durability in macular edema secondary to retinal vascular disease: preliminary findings. IEEE Journal of Translational Engineering in Health and Medicine 9:1−13

doi: 10.1109/jtehm.2021.3096378
[15]

Prasanna P, Bobba V, Figueiredo N, Sevgi DD, Lu C, et al. 2021. Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture in the PERMEATE study: insights into treatment durability. British Journal of Ophthalmology 105:1155−60

doi: 10.1136/bjophthalmol-2020-317182
[16]

Gallardo M, Munk MR, Kurmann T, De Zanet S, Mosinska A, et al. 2021. Machine learning can predict anti-VEGF treatment demand in a treat-and-extend regimen for patients with neovascular AMD, DME, and RVO associated macular edema. Ophthalmology Retina 5:604−24

doi: 10.1016/j.oret.2021.05.002
[17]

Hui VWK, Szeto SKH, Tang F, Yang D, Chen H, et al. 2022. Optical coherence tomography classification systems for diabetic macular edema and their associations with visual outcome and treatment responses - an updated review. Asia-Pacific Journal of Ophthalmology 11:247−57

doi: 10.1097/APO.0000000000000468
[18]

Szeto SK, Hui VWK, Tang FY, Yang D, Sun ZH, et al. 2023. OCT-based biomarkers for predicting treatment response in eyes with centre-involved diabetic macular oedema treated with anti-VEGF injections: a real-life retina clinic-based study. British Journal of Ophthalmology 107:525−33

doi: 10.1136/bjophthalmol-2021-319587
[19]

Kaur R, Sidhu T, Gupta P, Dahiya P, Aggarwal A, et al. 2023. Study of OCT based biomarkers as a predictor of visual outcome in diabetic macular edema. Indian Journal of Clinical and Experimental Ophthalmology 9:622−27

doi: 10.18231/j.ijceo.2023.117
[20]

Hsieh TC, Deng GH, Chang YC, Chang FL, He MS. 2023. A real-world study for timely assessing the diabetic macular edema refractory to intravitreal anti-VEGF treatment. Frontiers in Endocrinology 14:1108097

doi: 10.3389/fendo.2023.1108097
[21]

Chang YC, Huang YT, Hsu AY, Meng PP, Lin CJ, et al. 2023. Optical coherence tomography biomarkers in predicting treatment outcomes of diabetic macular edema after ranibizumab injections. Medicina 59:629

doi: 10.3390/medicina59030629
[22]

Rana V, Agarwal A, Arora A, Bansal R, Dogra M, et al. 2024. Predicting visual outcomes following anti-vascular endothelial growth factor treatment for diabetic macular edema. Indian Journal of Ophthalmology 72:S16−S21

doi: 10.4103/ijo.ijo_893_23
[23]

Roberts PK, Vogl WD, Gerendas BS, Glassman AR, Bogunovic H, et al. 2020. Quantification of fluid resolution and visual acuity gain in patients with diabetic macular edema using deep learning: a post hoc analysis of a randomized clinical trial. JAMA Ophthalmology 138:945−53

doi: 10.1001/jamaophthalmol.2020.2457
[24]

Midena E, Toto L, Frizziero L, Covello G, Torresin T, et al. 2023. Validation of an automated artificial intelligence algorithm for the quantification of major OCT parameters in diabetic macular edema. Journal of Clinical Medicine 12:2134

doi: 10.3390/jcm12062134
[25]

Tripathi A, Kumar P, Tulsani A, Chakrapani PK, Maiya G, et al. 2023. Fuzzy logic-based system for identifying the severity of diabetic macular edema from OCT B-scan images using DRIL, HRF, and cystoids. Diagnostics 13:2550

doi: 10.3390/diagnostics13152550
[26]

Michl M, Fabianska M, Seeböck P, Sadeghipour A, Haj Najeeb B, et al. 2022. Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. British Journal of Ophthalmology 106:113−20

doi: 10.1136/bjophthalmol-2020-317416
[27]

Usui-Ouchi A, Tamaki A, Sakanishi Y, Tamaki K, Mashimo K, et al. 2021. Factors affecting a short-term response to anti-VEGF therapy in diabetic macular edema. Life 11:83

doi: 10.3390/life11020083
[28]

Watanabe A, Takashina H, Nakano T. 2023. Effect of microaneurysms on the anti-VEGF treatment for diabetic macular edema: a retrospective cross-sectional study. Medicine 102:e35888

doi: 10.1097/md.0000000000035888
[29]

Takamura Y, Yamada Y, Morioka M, Gozawa M, Matsumura T, et al. 2023. Turnover of microaneurysms after intravitreal injections of faricimab for diabetic macular edema. Investigative Ophthalmology & Visual Science 64:31

doi: 10.1167/iovs.64.13.31
[30]

Huang WH, Lai CC, Chuang LH, Huang JC, Wu CH, et al. 2021. Foveal microvascular integrity association with anti-VEGF treatment response for diabetic macular edema. Investigative Ophthalmology & Visual Science 62:41

doi: 10.1167/iovs.62.9.41
[31]

Haj Najeeb B, Simader C, Deak G, Vass C, Gamper J, et al. 2017. The distribution of leakage on fluorescein angiography in diabetic macular edema: a new approach to its etiology. Investigative Ophthalmology & Visual Science 58:3986−90

doi: 10.1167/iovs.17-21510
[32]

Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, et al. 2010. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Investigative Opthalmology & Visual Science51:3653−59

doi: 10.1167/iovs.09-4935
[33]

Tang QQ, Wang HQ, Wu DW, Zhang MX. 2024. Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images. International Journal of Ophthalmology 17:188−200

doi: 10.18240/ijo.2024.01.24
[34]

Fan W, Uji A, Wykoff CC, Brown DM, van Hemert J, et al. 2023. Baseline retinal vascular bed area on ultra-wide field fluorescein angiography correlates with the anatomical outcome of diabetic macular oedema to ranibizumab therapy: two-year analysis of the DAVE Study. Eye 37:678−83

doi: 10.1038/s41433-021-01777-7
[35]

Morel JB, Fajnkuchen F, Amari F, Sritharan N, Bloch-Queyrat C, et al. 2023. Ultra-wide-field fluorescein angiography assessment of non-perfusion in patients with diabetic retinopathy treated with anti-vascular endothelial growth factor therapy. Journal of Clinical Medicine 12:1365

doi: 10.3390/jcm12041365
[36]

Dong V, Sevgi DD, Kar SS, Srivastava SK, Ehlers JP, et al. 2022. Evaluating the utility of deep learning for predicting therapeutic response in diabetic eye disease. Frontiers in Ophthalmology 2:852107

doi: 10.3389/fopht.2022.852107
[37]

Basiony AI, Mohamed Gad Marey H, Ezzat Abdel Fattah AM, Aly Zaky M. 2024. Predictive value of optical coherence tomography angiography in management of diabetic macular edema. BMC Ophthalmology 24:429

doi: 10.1186/s12886-024-03540-4
[38]

Chouhan S, Kalluri Bharat R, Surya J, Mohan S, Balaji J, et al. 2023. Preliminary report on optical coherence tomography angiography biomarkers in non-responders and responders to intravitreal anti-VEGF injection for diabetic macular oedema. Diagnostics 13:1735

doi: 10.3390/diagnostics13101735
[39]

Elnahry AG, Noureldine A, Abdel-Kader AA, Sorour O, Ramsey DJ. 2022. Optical coherence tomography angiography biomarkers predict anatomical response to bevacizumab in diabetic macular edema. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 15:395−405

doi: 10.2147/dmso.s351618
[40]

Pongsachareonnont P, Charoenphol P, Hurst C, Somkijrungroj T. 2020. The effect of anti-vascular endothelial growth factor on retinal microvascular changes in diabetic macular edema using swept-source optical Coherence Tomography Angiography. Clinical Ophthalmology 14:3871−80

doi: 10.2147/opth.s270410
[41]

Sorour OA, Elsheikh M, Chen S, Elnahry AG, Baumal CR, et al. 2021. Mean macular intercapillary area in eyes with diabetic macular oedema after anti-vascular endothelial growth factor therapy and its association with treatment response. Clinical & Experimental Ophthalmology 49:714−23

doi: 10.1111/ceo.13966
[42]

Yang D, Tang Z, Ran A, Nguyen TX, Szeto S, et al. 2023. Assessment of parafoveal diabetic macular ischemia on optical coherence tomography angiography images to predict diabetic retinal disease progression and visual acuity deterioration. JAMA Ophthalmology 141:641−49

doi: 10.1001/jamaophthalmol.2023.1821
[43]

Guo Y, Hormel TT, Gao M, You Q, Wang J, et al. 2024. Multi-plexus nonperfusion area segmentation in widefield OCT angiography using a deep convolutional neural network. Translational Vision Science & Technology 13:15

doi: 10.1167/tvst.13.7.15
[44]

Alibhai AY, De Pretto LR, Moult EM, Or C, Arya M, et al. 2020. Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography. Retina 40:412−20

doi: 10.1097/IAE.0000000000002403
[45]

Garg I, Miller JB. 2023. Semi-automated algorithm using directional filter for the precise quantification of non-perfusion area on widefield swept-source optical coherence tomography angiograms. Quantitative Imaging in Medicine and Surgery 13:3688−702

doi: 10.21037/qims-21-1175
[46]

Li L, Zhang W, Tu X, Pang J, Lai IF, et al. 2023. Application of artificial intelligence in precision medicine for diabetic macular edema. Asia-Pacific Journal of Ophthalmology 12:486−94

doi: 10.1097/APO.0000000000000583
[47]

Ruan Y, Yang D, Tang Z, Ran A, Wang J, et al. 2025. Reference-based oct angiogram super-resolution with learnable texture generation. IEEE Transactions on Neural Networks and Learning Systems 36:12146−58

doi: 10.1109/tnnls.2024.3456483
[48]

Kalra G, Kar SS, Sevgi DD, Madabhushi A, Srivastava SK, et al. 2021. Quantitative imaging biomarkers in age-related macular degeneration and diabetic eye disease: a step closer to precision medicine. Journal of Personalized Medicine 11:1161

doi: 10.3390/jpm11111161
[49]

Kar SS, Abraham J, Wykoff CC, Sevgi DD, Lunasco L, et al. 2022. Computational imaging biomarker correlation with intraocular cytokine expression in diabetic macular edema: radiomics insights from the IMAGINE study. Ophthalmology Science 2:100123

doi: 10.1016/j.xops.2022.100123
[50]

Zhou Y, Chia MA, Wagner SK, Ayhan MS, Williamson DJ, et al. 2023. A foundation model for generalizable disease detection from retinal images. Nature 622:156−63

doi: 10.1038/s41586-023-06555-x