[1]

Sheng D, Jing S, He X, Klein AM, Köhler HR, et al. 2024. Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security. Nature Communications 15:8413

doi: 10.1038/s41467-024-52734-3
[2]

Haney J, Rochman CM. 2025. Plastic pollution has the potential to alter ecological and evolutionary processes in aquatic ecosystems. Nature Ecology & Evolution 9:762−768

doi: 10.1038/s41559-025-02678-8
[3]

Rillig MC, Kim SW, Zhu YG. 2024. The soil plastisphere. Nature Reviews Microbiology 22:64−74

doi: 10.1038/s41579-023-00967-2
[4]

Li C, Gillings MR, Zhang C, Chen Q, Zhu D, et al. 2024. Ecology and risks of the global plastisphere as a newly expanding microbial habitat. The Innovation 5:100543

doi: 10.1016/j.xinn.2023.100543
[5]

Liu Y, Liu W, Yang X, Wang J, Lin H, et al. 2021. Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Science of The Total Environment 773:145643

doi: 10.1016/j.scitotenv.2021.145643
[6]

Yu X, Zhang Y, Tan L, Han C, Li H, et al. 2022. Microplastisphere may induce the enrichment of antibiotic resistance genes on microplastics in aquatic environments: a review. Environmental Pollution 310:119891

doi: 10.1016/j.envpol.2022.119891
[7]

Luo G, Fan L, Liang B, Guo J, Gao SH. 2025. Determining antimicrobial resistance in the plastisphere: lower risks of nonbiodegradable vs higher risks of biodegradable microplastics. Environmental Science & Technology 59:7722−7735

doi: 10.1021/acs.est.5c00246
[8]

Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C. 2021. Oceanic hitchhikers–assessing pathogen risks from marine microplastic. Trends in Microbiology 29:107−116

doi: 10.1016/j.tim.2020.06.011
[9]

Kaur K, Reddy S, Barathe P, Oak U, Shriram V, et al. 2022. Microplastic-associated pathogens and antimicrobial resistance in environment. Chemosphere 291:133005

doi: 10.1016/j.chemosphere.2021.133005
[10]

Zhu D, Ma J, Li G, Rillig MC, Zhu YG. 2022. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. The ISME Journal 16:521−532

doi: 10.1038/s41396-021-01103-9
[11]

Li Y, Yang R, Guo L, Gao W, Su P, et al. 2022. The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands. Journal of Hazardous Materials 430:128390

doi: 10.1016/j.jhazmat.2022.128390
[12]

Wang J, Peng C, Dai Y, Li Y, Jiao S, et al. 2022. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. Water Research 222:118920

doi: 10.1016/j.watres.2022.118920
[13]

Ma B, Wang Y, Zhao K, Stirling E, Lv X, et al. 2024. Biogeographic patterns and drivers of soil viromes. Nature Ecology & Evolution 8:717−728

doi: 10.1038/s41559-024-02347-2
[14]

Du S, Tong X, Lai ACK, Chan CK, Mason CE, et al. 2023. Highly host-linked viromes in the built environment possess habitat-dependent diversity and functions for potential virus-host coevolution. Nature Communications 14:2676

doi: 10.1038/s41467-023-38400-0
[15]

Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, et al. 2020. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. The ISME Journal 14:2007−2018

doi: 10.1038/s41396-020-0664-9
[16]

Chevallereau A, Pons BJ, van Houte S, Westra ER. 2022. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology 20:49−62

doi: 10.1038/s41579-021-00602-y
[17]

Touchon M, Moura de Sousa JA, Rocha EPC. 2017. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Current Opinion in Microbiology 38:66−73

doi: 10.1016/j.mib.2017.04.010
[18]

Debroas D, Siguret C. 2019. Viruses as key reservoirs of antibiotic resistance genes in the environment. The ISME Journal 13:2856−2867

doi: 10.1038/s41396-019-0478-9
[19]

Gabashvili E, Kobakhidze S, Koulouris S, Robinson T, Kotetishvili M. 2021. Bi- and multi-directional gene transfer in the natural populations of polyvalent bacteriophages, and their host species spectrum representing foodborne versus other human and/or animal pathogens. Food and Environmental Virology 13:179−202

doi: 10.1007/s12560-021-09460-6
[20]

Borodovich T, Shkoporov AN, Ross RP, Hill C. 2022. Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterology Report 10:goac012

doi: 10.1093/gastro/goac012
[21]

Hawkins DEDP, Bayfield OW, Fung HKH, Grba DN, Huet A, et al. 2023. Insights into a viral motor: the structure of the HK97 packaging termination assembly. Nucleic Acids Research 51:7025−7035

doi: 10.1093/nar/gkad480
[22]

Chee MSJ, Serrano E, Chiang YN, Harling-Lee J, Man R, et al. 2023. Dual pathogenicity island transfer by piggybacking lateral transduction. Cell 186:3414−3426.e16

doi: 10.1016/j.cell.2023.07.001
[23]

Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, et al. 2016. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications 7:13333

doi: 10.1038/ncomms13333
[24]

Luong T, Salabarria AC, Edwards RA, Roach DR. 2020. Standardized bacteriophage purification for personalized phage therapy. Nature Protocols 15:2867−2890

doi: 10.1038/s41596-020-0346-0
[25]

Mathieu J, Yu P, Zuo P, Da Silva MLB, Alvarez PJJ. 2019. Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research 52:849−857

doi: 10.1021/acs.accounts.8b00576
[26]

Chen XP, Zhu D, Liu SY, Sun MM, Ye M, et al. 2025. Unique plastisphere viromes with habitat-dependent potential for modulating global methane cycle. Nature Communications 16:8098

doi: 10.1038/s41467-025-63215-6
[27]

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications 13:1553

doi: 10.1038/s41467-022-29283-8
[28]

Wang A, Huang F, Wang W, Zhao Y, Su Y, et al. 2025. GWPD: a multifunctional platform to unravel biological risk factors in global engineered water systems. Engineering 51:254−262

doi: 10.1016/j.eng.2024.04.022
[29]

Wang L, Lin D, Xiao KQ, Ma LJ, Fu YM, et al. 2024. Soil viral–host interactions regulate microplastic-dependent carbon storage. Proceedings of the National Academy of Sciences of the United States of America 121:e2413245121

doi: 10.1073/pnas.2413245121
[30]

Xia R, Yin X, Balcazar JL, Huang D, Liao J, et al. 2025. Bacterium-phage symbiosis facilitates the enrichment of bacterial pathogens and antibiotic-resistant bacteria in the plastisphere. Environmental Science & Technology 59:2948−2960

doi: 10.1021/acs.est.4c08265
[31]

Wang J, Guo X, Xue J. 2021. Biofilm-Developed Microplastics As Vectors of Pollutants in Aquatic Environments. Environmental Science & Technology 55:12780−12790

doi: 10.1021/acs.est.1c04466
[32]

Bhagwat G, Tran TKA, Lamb D, Senathirajah K, Grainge I, et al. 2021. Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology 55:8877−8887

doi: 10.1021/acs.est.1c02012
[33]

Huang D, Xia R, Chen C, Liao J, Chen L, et al. 2024. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends in Microbiology 32:902−916

doi: 10.1016/j.tim.2024.02.002
[34]

Xu Q, Zhang H, Vandenkoornhuyse P, Guo S, Kuzyakov Y, et al. 2024. Carbon starvation raises capacities in bacterial antibiotic resistance and viral auxiliary carbon metabolism in soils. Proceedings of the National Academy of Sciences of the United States of America 121:e2318160121

doi: 10.1073/pnas.2318160121
[35]

Wendling CC, Refardt D, Hall AR. 2021. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 75:515−528

doi: 10.1111/evo.14153
[36]

Letten AD, Hall AR, Levine JM. 2021. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nature Ecology & Evolution 5:431−441

doi: 10.1038/s41559-020-01385-w
[37]

Li R, An XL, Wang Y, Yang Z, Su JQ, et al. 2024. Viral metagenome reveals microbial hosts and the associated antibiotic resistome on microplastics. Nature Water 2:553−565

doi: 10.1038/s44221-024-00249-y
[38]

Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, et al. 2017. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. The ISME Journal 11:237−247

doi: 10.1038/ismej.2016.90