[1]

Gu Y, Zhao J, Johnson JA. 2020. Polymer networks: from plastics and gels to porous frameworks. Angewandte Chemie International Edition 59(13):5022−5049

doi: 10.1002/anie.201902900
[2]

Bai B, Jin H, Fan C, Cao C, Wei W, et al. 2019. Experimental investigation on liquefaction of plastic waste to oil in supercritical water. Waste Management 89:247−253

doi: 10.1016/j.wasman.2019.04.017
[3]

Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, et al. 2004. Lost at sea: where is all the plastic? Science 304(5672):838−838

doi: 10.1126/science.1094559
[4]

Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea. PLoS One 9(12):e111913

doi: 10.1371/journal.pone.0111913
[5]

Song Y, Cao C, Qiu R, Hu J, Liu M, Lu S, et al. 2019. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution 250:447−455

doi: 10.1016/j.envpol.2019.04.066
[6]

Dong Y, Gao M, Song Z, Qiu W. 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution 259:113892

doi: 10.1016/j.envpol.2019.113892
[7]

Wang W, Yuan W, Xu EG, Li L, Zhang H, et al. 2022. Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: progress and prospects. Environmental Research 203:111867

doi: 10.1016/j.envres.2021.111867
[8]

Yannick Ngaba M Jr, Rennenberg H, Hu B. 2025. Insights Into the efficiency and health impacts of emerging microplastic bioremediation approaches. Global Change Biology 31(5):e70226

doi: 10.1111/gcb.70226
[9]

Song Q, Zhang Y, Ju C, Zhao T, Meng Q, et al. 2024. Microbial strategies for effective microplastics biodegradation: insights and innovations in environmental remediation. Environmental Research 263:120046

doi: 10.1016/j.envres.2024.120046
[10]

Houssini K, Li J, Tan Q. 2025. Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment 6(1):257

doi: 10.1038/s43247-025-02169-5
[11]

Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, et al. 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering 8(9):3494−3511

doi: 10.1021/acssuschemeng.9b06635
[12]

Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. 2021. Plastics in the Earth system. Science 373(6550):51−55

doi: 10.1126/science.abb0354
[13]

Ashworth DC, Elliott P, Toledano MB. 2014. Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environment International 69:120−132

doi: 10.1016/j.envint.2014.04.003
[14]

Du H, Xie Y, Wang J. 2021. Microplastic degradation methods and corresponding degradation mechanism: research status and future perspectives. Journal of Hazardous Materials 418:126377

doi: 10.1016/j.jhazmat.2021.126377
[15]

Guo HQ, Yang K, Cui L. 2025. Microbial Degradation of Environmental Microplastics. Progress in Chemistry 37(1):112−123 (in Chinese)

doi: 10.7536/PC240706
[16]

Yang N, Zhang H, Chen M, Shao LM, He PJ. 2012. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Waste Management 32(12):2552−2560

doi: 10.1016/j.wasman.2012.06.008
[17]

Thew CXE, Lee ZS, Srinophakun P, Ooi CW. 2023. Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. Bioresource Technology 374:128772

doi: 10.1016/j.biortech.2023.128772
[18]

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196−1199

doi: 10.1126/science.aad6359
[19]

Auta HS, Emenike CU, Fauziah SH. 2017. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution 231:1552−1559

doi: 10.1016/j.envpol.2017.09.043
[20]

Gajendiran A, Krishnamoorthy S, Abraham J. 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6(1):52

doi: 10.1007/s13205-016-0394-x
[21]

Niu L, Wang Y, Li Y, Lin L, Chen Y, et al. 2023. Occurrence, degradation pathways, and potential synergistic degradation mechanism of microplastics in surface water: a review. Current Pollution Reports 9(2):312−326

doi: 10.1007/s40726-023-00262-x
[22]

DSouza GC, Sheriff RS, Ullanat V, Shrikrishna A, Joshi AV, et al. 2021. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon 7(5):e07008

doi: 10.1016/j.heliyon.2021.e07008
[23]

Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, et al. 2016. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research 23(18):18307−18319

doi: 10.1007/s11356-016-7000-y
[24]

Tájmel D, Cruz-Paredes C, Rousk J. 2024. Heat wave-induced microbial thermal trait adaptation and its reversal in the Subarctic. Global Change Biology 30(1):e17032

doi: 10.1111/gcb.17032
[25]

Noll P, Lilge L, Hausmann R, Henkel M. 2020. Modeling and exploiting microbial temperature response. Processes 8(1):121

doi: 10.3390/pr8010121
[26]

Guo F, Liu B, Zhao J, Hou Y, Wu J, et al. 2024. Effects of polyethylene, polylactic acid, and tire particles on the sediment microbiome and metabolome at high and low temperatures. Applied and Environmental Microbiology 90(2):e02016-23

doi: 10.1128/aem.02016-23
[27]

Finayeva N, Kristanti RA, Rachana K, Batubara UM. 2025. Biodegradation of microplastics: mechanisms, challenges, and future prospects for environmental remediation. Tropical Aquatic and Soil Pollution 5(1):53−70

doi: 10.53623/tasp.v5i1.671
[28]

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, et al. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America 114(19):4881−4886

doi: 10.1073/pnas.1618082114
[29]

van Deelen G. 2025. Climate change made extreme heat days more likely. Eos 106 doi: 10.1029/2025EO250208

[30]

Johnson NW, Valenzuela-Ortega M, Thorpe TW, Era Y, Kjeldsen A, et al. 2025. A biocompatible Lossen rearrangement in Escherichia coli. Nature Chemistry 17(7):1020−1026

doi: 10.1038/s41557-025-01845-5
[31]

De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, et al. 2015. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environmental Science & Technology 49(16):9629−9638

doi: 10.1021/acs.est.5b01093
[32]

Tu C, Chen T, Zhou Q, Liu Y, Wei J, et al. 2020. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Science of The Total Environment 734:139237

doi: 10.1016/j.scitotenv.2020.139237
[33]

He Y, Wei G, Tang B, Salam M, Shen A, et al. 2022. Microplastics benefit bacteria colonization and induce microcystin degradation. Journal of Hazardous Materials 431:128524

doi: 10.1016/j.jhazmat.2022.128524
[34]

Gu JD. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation 52(2):69−91

doi: 10.1016/S0964-8305(02)00177-4
[35]

Gong J, Kong T, Li Y, Li Q, Li Z, et al. 2018. Biodegradation of microplastic derived from poly(ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers 10(12):1326

doi: 10.3390/polym10121326
[36]

Zhao Z, Gao G, Xi Y, Wang J, Sun P, et al. 2024. Inverse ceria-nickel catalyst for enhanced C–O bond hydrogenolysis of biomass and polyether. Nature Communications 15(1):8444

doi: 10.1038/s41467-024-52704-9
[37]

Sun X, Chen Z, Kong T, Chen Z, Dong Y, et al. 2022. Mycobacteriaceae mineralizes micropolyethylene in riverine ecosystems. Environmental Science & Technology 56(22):15705−15717

doi: 10.1021/acs.est.2c05346
[38]

Mohee R, Unmar GD, Mudhoo A, Khadoo P. 2008. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Management 28(9):1624−1629

doi: 10.1016/j.wasman.2007.07.003
[39]

Ali Shah A, Hasan F, Hameed A, Ahmed S. 2008. Biological degradation of plastics: a comprehensive review. Biotechnology Advances 26(3):246−265

doi: 10.1016/j.biotechadv.2007.12.005
[40]

Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, et al. 2008. Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere 73(4):429−442

doi: 10.1016/j.chemosphere.2008.06.064
[41]

Pathak VM, Navneet. 2017. Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 4(1):15

doi: 10.1186/s40643-017-0145-9
[42]

Sun W, Zhang Y, Zhang H, Wu H, Liu Q, et al. 2024. Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics. Science of The Total Environment 907:167708

doi: 10.1016/j.scitotenv.2023.167708
[43]

Othman AR, Hasan HA, Muhamad MH, Ismail N’I, Abdullah SRS. 2021. Microbial degradation of microplastics by enzymatic processes: a review. Environmental Chemistry Letters 19(4):3057−3073

doi: 10.1007/s10311-021-01197-9
[44]

Solanki S, Sinha S, Singh R. 2022. Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation 33(6):529−556

doi: 10.1007/s10532-022-10001-6
[45]

Lee B, Pometto AL III, Fratzke A, Bailey TB Jr. 1991. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Applied and Environmental Microbiology 57(3):678−685

doi: 10.1128/aem.57.3.678-685.1991
[46]

Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. 2019. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials 380:120899

doi: 10.1016/j.jhazmat.2019.120899
[47]

Jeon HJ, Kim MN. 2015. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation 103:141−146

doi: 10.1016/j.ibiod.2015.04.024
[48]

Wafaa DM, Sadik MW, Eissa HF, Tonbol K. 2025. Biodegradation of low-density polyethylene LDPE by marine bacterial strains Gordonia alkanivorans PBM1 and PSW1 isolated from Mediterranean Sea, Alexandria, Egypt. Scientific Reports 15(1):16769

doi: 10.1038/s41598-025-96811-z
[49]

Zhang X, Feng X, Lin Y, Gou H, Zhang Y, et al. 2023. Degradation of polyethylene by Klebsiella pneumoniae Mk-1 isolated from soil. Ecotoxicology and Environmental Safety 258:114965

doi: 10.1016/j.ecoenv.2023.114965
[50]

Tabatabaei F, Mafigholami R, Moghimi H, Khoramipoor S. 2023. Investigating biodegradation of polyethylene and polypropylene microplastics in Tehran DWTPs. Water Science & Technology 88(11):2996−3008

doi: 10.2166/wst.2023.360
[51]

Shahnawaz M, Sangale MK, Ade AB. 2016. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environmental Science and Pollution Research 23(14):14621−14635

doi: 10.1007/s11356-016-6542-3
[52]

Ameen F, Al-Shwaiman HA, Almalki R, Al-Sabri AE, Sholkamy EN. 2025. Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini. Biodegradation 36(1):19

doi: 10.1007/s10532-025-10115-7
[53]

Chauhan D, Agrawal G, Deshmukh S, Roy SS, Priyadarshini R. 2018. Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances 8(66):37590−37599

doi: 10.1039/C8RA06448B
[54]

Pathak VM, Navneet. 2023. Exploitation of bacterial strains for microplastics (LDPE) biodegradation. Chemosphere 316:137845

doi: 10.1016/j.chemosphere.2023.137845
[55]

Yadav H, Khan MRH, Quadir M, Rusch KA, Mondal PP, Orr M, et al. 2023. Cutting boards: an overlooked source of microplastics in human food? Environmental Science & Technology 57(22):8225−8235

doi: 10.1021/acs.est.3c00924
[56]

Muhonja CN, Makonde H, Magoma G, Imbuga M. 2018. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13(7):e0198446

doi: 10.1371/journal.pone.0198446
[57]

Thapa G, Gurung S, Han SR, Oh TJ. 2025. In-silico and biochemical insights into MHET biodegradation by Arctic Pseudomonas MHET hydrolase. International Journal of Biological Macromolecules 321:146195

doi: 10.1016/j.ijbiomac.2025.146195
[58]

Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. 2017. Microplastics alter composition of fungal communities in aquatic ecosystems. Environmental Microbiology 19(11):4447−4459

doi: 10.1111/1462-2920.13891
[59]

Grossart HP, Rojas-Jimenez K. 2016. Aquatic fungi: targeting the forgotten in microbial ecology. Current Opinion in Microbiology 31:140−145

doi: 10.1016/j.mib.2016.03.016
[60]

Oberbeckmann S, Osborn AM, Duhaime MB. 2016. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11(8):e0159289

doi: 10.1371/journal.pone.0159289
[61]

Kirchman DL. 2002. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiology Ecology 39(2):91−100

doi: 10.1016/S0168-6496(01)00206-9
[62]

Riedel T, Held B, Nolan M, Lucas S, Lapidus A, Tice H, et al. 2012. Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801T). Standards in Genomic Sciences 7(1):120−130

doi: 10.4056/sigs.3296896
[63]

Su Z, Fei F, Liu R, Sun C. 2025. A marine fungus Alternaria alternata FB1 degrades polypropylene. Journal of Hazardous Materials 497:139621

doi: 10.1016/j.jhazmat.2025.139621
[64]

Sánchez C. 2020. Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnology Advances 40:107501

doi: 10.1016/j.biotechadv.2019.107501
[65]

Dinakarkumar Y, Ramakrishnan G, Gujjula KR, Vasu V, Balamurugan P, et al. 2024. Fungal bioremediation: an overview of the mechanisms, applications and future perspectives. Environmental Chemistry and Ecotoxicology 6:293−302

doi: 10.1016/j.enceco.2024.07.002
[66]

Zhang J, Gao D, Li Q, Zhao Y, Li L, et al. 2020. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of The Total Environment 704:135931

doi: 10.1016/j.scitotenv.2019.135931
[67]

Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM. 2015. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation 105:21−29

doi: 10.1016/j.ibiod.2015.08.006
[68]

Moyses DN, Teixeira DA, Waldow VA, Freire DMG, Castro AM. 2021. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using Penicillium species. 3 Biotech 11(10):435

doi: 10.1007/s13205-021-02988-1
[69]

Yanto DHY, Krishanti NPRA, Ardiati FC, Anita SH, Nugraha IK, et al. 2019. Biodegradation of styrofoam waste by ligninolytic fungi and bacteria. IOP Conference Series: Earth and Environmental Science 308(1):012001

doi: 10.1088/1755-1315/308/1/012001
[70]

Ibrahim SS, Ionescu D, Grossart HP. 2024. Tapping into fungal potential: biodegradation of plastic and rubber by potent Fungi. Science of The Total Environment 934:173188

doi: 10.1016/j.scitotenv.2024.173188
[71]

El-Dash HA, Yousef NE, Aboelazm AA, Awan ZA, Yahya G, et al. 2023. Optimizing eco-friendly degradation of polyvinyl chloride (PVC) plastic using environmental strains of malassezia species and Aspergillus fumigatus. International Journal of Molecular Sciences 24(20):15452

doi: 10.3390/ijms242015452
[72]

Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, et al. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment 586:10−15

doi: 10.1016/j.scitotenv.2017.02.017
[73]

Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, et al. 2021. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Science of The Total Environment 780:146590

doi: 10.1016/j.scitotenv.2021.146590
[74]

Chia WY, Tang DYY, Khoo KS, Lup ANK, Chew KW. 2020. Nature's fight against plastic pollution: algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology 4:100065

doi: 10.1016/j.ese.2020.100065
[75]

Sarmah P, Rout J. 2018. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research 25(33):33508−33520

doi: 10.1007/s11356-018-3079-7
[76]

Cunha C, Silva L, Paulo J, Faria M, Nogueira N, et al. 2020. Microalgal-based biopolymer for nano- and microplastic removal: a possible biosolution for wastewater treatment. Environmental Pollution 263:114385

doi: 10.1016/j.envpol.2020.114385
[77]

Mastropetros SG, Pispas K, Zagklis D, Ali SS, Kornaros M. 2022. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: recent advances. Biotechnology Advances 60:107999

doi: 10.1016/j.biotechadv.2022.107999
[78]

Pavlov N, Wallbank JA, Hermans SM, Kingsbury JM, Pantos O, et al. 2025. Putative plastic degrading communities within New Zealand's geothermal environments. Total Environment Microbiology 1(2):100012

doi: 10.1016/j.temicr.2025.100012
[79]

Inderthal H, Tai SL, Harrison STL. 2021. Non-hydrolyzable plastics–an interdisciplinary look at plastic bio-oxidation. Trends in Biotechnology 39(1):12−23

doi: 10.1016/j.tibtech.2020.05.004
[80]

Taniguchi I, Yoshida S, Hiraga K, Miyamoto K, Kimura Y, et al. 2019. Biodegradation of PET: current status and application aspects. ACS Catalysis 9(5):4089−4105

doi: 10.1021/acscatal.8b05171
[81]

James LF, Dudley KJ, Te'o VSJ, Patel BKC. 2023. A hot topic: thermophilic plastic biodegradation. Trends in Biotechnology 41(9):1117−1126

doi: 10.1016/j.tibtech.2023.03.016
[82]

Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, et al. 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology 10:780

doi: 10.3389/fmicb.2019.00780
[83]

Guo F, Liu B, Zhao J, Hou Y, Wu J, et al. 2024. Temperature-dependent effects of microplastics on sediment bacteriome and metabolome. Chemosphere 350:141190

doi: 10.1016/j.chemosphere.2024.141190
[84]

da Silva MRF, Souza KS, Motteran F, de Araújo LCA, Singh R, et al. 2024. Exploring biodegradative efficiency: a systematic review on the main microplastic-degrading bacteria. Frontiers in Microbiology 15:1360844

doi: 10.3389/fmicb.2024.1360844
[85]

Özdemir S, Akarsu C, Acer Ö, Fouillaud M, Dufossé L, et al. 2022. Isolation of thermophilic bacteria and investigation of their microplastic degradation ability using polyethylene polymers. Microorganisms 10(12):2441

doi: 10.3390/microorganisms10122441
[86]

Wallace PW, Haernvall K, Ribitsch D, Zitzenbacher S, Schittmayer M, et al. 2017. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Applied Microbiology and Biotechnology 101(6):2291−2303

doi: 10.1007/s00253-016-7992-8
[87]

Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, et al. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Applied and Environmental Microbiology 84(8):e02773-17

doi: 10.1128/AEM.02773-17
[88]

Mohanan N, Wong CH, Budisa N, Levin DB. 2022. Characterization of polymer degrading lipases, LIP1 and LIP2 from Pseudomonas chlororaphis PA23. Frontiers in Bioengineering and Biotechnology 10:854298

doi: 10.3389/fbioe.2022.854298
[89]

Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, et al. 2014. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology 98(24):10053−10064

doi: 10.1007/s00253-014-5860-y
[90]

Adıgüzel AO, Tunçer M. 2017. Purification and characterization of cutinase from Bacillus sp. KY0701 isolated from plastic wastes. Preparative Biochemistry & Biotechnology 47(9):925−933

doi: 10.1080/10826068.2017.1365245
[91]

Müller CA, Perz V, Provasnek C, Quartinello F, Guebitz GM, et al. 2017. Discovery of polyesterases from moss-associated microorganisms. Applied and Environmental Microbiology 83(4):e02641-16

doi: 10.1128/AEM.02641-16
[92]

Valdez-Nuñez LF, Rivera-Jacinto MA. 2024. Thermophilic bacteria from Peruvian hot springs with high potential application in environmental biotechnology. Environmental Technology 45(7):1420−1435

doi: 10.1080/09593330.2022.2143293
[93]

Atanasova N, Paunova-Krasteva T, Stoitsova S, Radchenkova N, Boyadzhieva I, et al. 2021. Degradation of poly(ε-caprolactone) by a thermophilic community and Brevibacillus thermoruber strain 7 isolated from Bulgarian hot spring. Biomolecules 11(10):1488

doi: 10.3390/biom11101488
[94]

Sukkhum S, Tokuyama S, Tamura T, Kitpreechavanich V. 2009. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. The Journal of General and Applied Microbiology 55(6):459−467

doi: 10.2323/jgam.55.459
[95]

Li X, Liu X, Zhang J, Chen F, Khalid M, et al. 2024. Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting. Bioresource Technology 393:130108

doi: 10.1016/j.biortech.2023.130108
[96]

Dang TCH, Nguyen DT, Tai H, Nguyen TC, Tran TTH, et al. 2018. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances in Natural Sciences: Nanoscience and Nanotechnology 9:015014

doi: 10.1088/2043-6254/aaabaf
[97]

Chen Z, Zhao W, Xing R, Xie S, Yang X, et al. 2020. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. Journal of Hazardous Materials 384:121271

doi: 10.1016/j.jhazmat.2019.121271
[98]

Kleeberg I, Hetz C, Kroppenstedt RM, Müller RJ, Deckwer WD. 1998. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Applied and Environmental Microbiology 64(5):1731−1735

doi: 10.1128/AEM.64.5.1731-1735.1998
[99]

Hu X, Thumarat U, Zhang X, Tang M, Kawai F. 2010. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Applied Microbiology and Biotechnology 87(2):771−779

doi: 10.1007/s00253-010-2555-x
[100]

Cazaudehore G, Monlau F, Gassie C, Lallement A, Guyoneaud R. 2023. Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion. Journal of Hazardous Materials 443:130208

doi: 10.1016/j.jhazmat.2022.130208
[101]

Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, et al. 2024. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nature Communications 15(1):3338

doi: 10.1038/s41467-024-47132-8
[102]

Shirke AN, Basore D, Butterfoss GL, Bonneau R, Bystroff C, et al. 2016. Toward rational thermostabilization of Aspergillus oryzae cutinase: insights into catalytic and structural stability. Proteins: Structure, Function, and Bioinformatics 84(1):60−72

doi: 10.1002/prot.24955
[103]

Thumarat U, Nakamura R, Kawabata T, Suzuki H, Kawai F. 2012. Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Applied Microbiology and Biotechnology 95(2):419−430

doi: 10.1007/s00253-011-3781-6
[104]

Atanasova N, Stoitsova S, Paunova-Krasteva T, Kambourova M. 2021. Plastic degradation by extremophilic bacteria. International Journal of Molecular Sciences 22(11):5610

doi: 10.3390/ijms22115610
[105]

Tomita K, Hayashi N, Ikeda N, Kikuchi Y. 2003. Isolation of a thermophilic bacterium degrading some nylons. Polymer Degradation and Stability 81(3):511−514

doi: 10.1016/S0141-3910(03)00151-4
[106]

Erickson E, Gado JE, Avilán L, Bratti F, Brizendine RK, Cox PA, et al. 2022. Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nature Communications 13(1):7850

doi: 10.1038/s41467-022-35237-x
[107]

Son HF, Joo S, Seo H, Sagong HY, Lee SH, et al. 2020. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis. Enzyme and Microbial Technology 141:109656

doi: 10.1016/j.enzmictec.2020.109656
[108]

Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, et al. 2022. Directed evolution of an efficient and thermostable PET depolymerase. Nature Catalysis 5(8):673−681

doi: 10.1038/s41929-022-00821-3
[109]

Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580(7802):216−219

doi: 10.1038/s41586-020-2149-4
[110]

Tang C, Wang L, Sun J, Chen G, Shen J, et al. 2025. Degradable living plastics programmed by engineered spores. Nature Chemical Biology 21(7):1006−1011

doi: 10.1038/s41589-024-01713-2
[111]

Yan F, Wei R, Cui Q, Bornscheuer UT, Liu YJ. 2021. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microbial Biotechnology 14(2):374−385

doi: 10.1111/1751-7915.13580
[112]

Wei R, Breite D, Song C, Gräsing D, Ploss T, et al. 2019. Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Advanced Science 6(14):1900491

doi: 10.1002/advs.201900491
[113]

Skariyachan S, Taskeen N, Kishore AP, Krishna BV, Naidu G. 2021. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management 284:112030

doi: 10.1016/j.jenvman.2021.112030
[114]

Shen H, Yuan Y, Liu C, Yang M, Xing J. 2024. Rapid degradation of poly(butylene succinate-co-butylene terephthalate)s by microbial communities at high-temperature. Biochemical Engineering Journal 204:109230

doi: 10.1016/j.bej.2024.109230
[115]

Zhu B, Chen Y, Wei N. 2019. Engineering biocatalytic and biosorptive materials for environmental applications. Trends in Biotechnology 37(6):661−676

doi: 10.1016/j.tibtech.2018.11.005
[116]

Hadad D, Geresh S, Sivan A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology 98(5):1093−1100

doi: 10.1111/j.1365-2672.2005.02553.x
[117]

Chua TK, Tseng M, Yang MK. 2013. Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2. AMB Express 3:8

doi: 10.1186/2191-0855-3-8
[118]

Tan D, Wang Y, Tong Y, Chen GQ. 2021. Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends in Biotechnology 39(9):953−963

doi: 10.1016/j.tibtech.2020.11.010