[1]

Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM. 2009. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219−35

doi: 10.1261/rna.1646909
[2]

Wu F, Yu L, Cao W, Mao Y, Liu Z, et al. 2007. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. The Plant Cell 19:914−25

doi: 10.1105/tpc.106.048637
[3]

Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, et al. 2005. Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins in Arabidopsis thaliana. Plant Molecular Biology 57:173−88

doi: 10.1007/s11103-004-6853-5
[4]

Yang X, Dong W, Ren W, Zhao Q, Wu F, et al. 2021. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. The Plant Cell 33:1980−96

doi: 10.1093/plcell/koab090
[5]

Lu C, Fedoroff N. 2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. The Plant Cell 12:2351−65

doi: 10.1105/tpc.12.12.2351
[6]

Vazquez F, Gasciolli V, Crété P, Vaucheret H. 2004. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology 14:346−51

doi: 10.1016/j.cub.2004.01.035
[7]

Shen X, He J, Ping Y, Guo J, Hou N, et al. 2022. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiology 188:1686−708

doi: 10.1093/plphys/kiab565
[8]

Shen X, Song Y, Ping Y, He J, Xie Y, et al. 2023. The RNA-binding protein MdHYL1 modulates cold tolerance and disease resistance in apple. Plant Physiology 192:2143−60

doi: 10.1093/plphys/kiad187
[9]

Ren W, Wang H, Bai J, Wu F, He Y. 2018. Association of microRNAs with types of leaf curvature in Brassica rapa. Frontiers in Plant Science 9:73

doi: 10.3389/fpls.2018.00073
[10]

Kung JTY, Colognori D, Lee JT. 2013. Long noncoding RNAs: past, present, and future. Genetics 193:651−69

doi: 10.1534/genetics.112.146704
[11]

Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development 23:1494−504

[12]

Kay GF. 1998. Xist and X chromosome inactivation. Molecular and Cellular Endocrinology 140:71−76

doi: 10.1016/S0303-7207(98)00032-X
[13]

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, et al. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689−93

doi: 10.1126/science.1192002
[14]

Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV, et al. 2011. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted gnas cluster. PLOS Genetics 7:e1001347

doi: 10.1371/journal.pgen.1001347
[15]

Zhang H, Yang X, Feng X, Xu H, Yang Q, et al. 2018. Chromosome-wide gene dosage rebalance may benefit tumor progression. Molecular Genetics and Genomics 293:895−906

doi: 10.1007/s00438-018-1429-2
[16]

Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, et al. 2015. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death & Disease 6:e1700

doi: 10.1038/cddis.2015.67
[17]

Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, et al. 2018. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Research 46:1793−809

doi: 10.1093/nar/gkx1259
[18]

Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, et al. 2014. LincRNA-p21 activates p21 in cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Molecular Cell 54:777−90

doi: 10.1016/j.molcel.2014.04.025
[19]

Guennewig B, Cooper AA. 2014. The central role of noncoding RNA in the brain. International Review of Neurobiology 116:153−94

doi: 10.1016/b978-0-12-801105-8.00007-2
[20]

Tani H, Torimura M, Akimitsu N. 2013. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 8:e55684

doi: 10.1371/journal.pone.0055684
[21]

Tay Y, Rinn J, Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344−52

doi: 10.1038/nature12986
[22]

Leng Y, Sun J, Wang J, Liu H, Zheng H, et al. 2020. Genome-wide lncRNAs identification and association analysis for cold-responsive genes at the booting stage in rice (Oryza sativa L.). The Plant Genome 13:e20020

doi: 10.1002/tpg2.20020
[23]

Li M, Dou M, Liu R, Jiao Y, Hao Z, et al. 2022. Identification of long non-coding RNAs in response to downy mildew stress in grape. Fruit Research 2:19

doi: 10.48130/frures-2022-0019
[24]

Zhou H, Ren F, Wang X, Qiu K, Sheng Y, et al. 2022. Genome-wide identification and characterization of long noncoding RNAs during peach (Prunus persica) fruit development and ripening. Scientific Reports 12:11044

doi: 10.1038/s41598-022-15330-3
[25]

Wang S, Guo M, Huang K, Qi Q, Li W, et al. 2022. Genome-wide identification and characterization of long noncoding RNAs involved in apple fruit development and ripening. Scientia Horticulturae 295:110898

doi: 10.1016/j.scienta.2022.110898
[26]

Meng X, Zhang P, Chen Q, Wang J, Chen M. 2018. Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics 19:607

doi: 10.1186/s12864-018-4993-2
[27]

Yang T, Ma H, Zhang J, Wu T, Song T, et al. 2019. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. The Plant Journal 100:572−90

doi: 10.1111/tpj.14470
[28]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[29]

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

doi: 10.1093/gigascience/giab008
[30]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[31]

Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, et al. 2013. Software for computing and annotating genomic ranges. PLoS Computational Biology 9:e1003118

doi: 10.1371/journal.pcbi.1003118
[32]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[33]

Kolde R. 2025. pheatmap: Pretty Heatmaps. R package version 1.0. 13. https://github.com/raivokolde/pheatmap

[34]

Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2:100141

doi: 10.1016/j.xinn.2021.100141
[35]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[36]

Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, et al. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research 45:W12−W16

doi: 10.1093/nar/gkx428
[37]

Li A, Zhou H, Xiong S, Li J, Mallik S, et al. 2024. PLEKv2: predicting lncRNAs and mRNAs based on intrinsic sequence features and the coding-net model. BMC Genomics 25:756

doi: 10.1186/s12864-024-10662-y
[38]

Sun L, Luo H, Bu D, Zhao G, Yu K, et al. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research 41:e166

doi: 10.1093/nar/gkt646
[39]

Li X, Chen P, Xie Y, Yan Y, Wang L, et al. 2020. Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis. Horticulture Research 7:98

doi: 10.1038/s41438-020-0320-6
[40]

An N, Fan S, Wang Y, Zhang L, Gao C, et al. 2018. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene 666:44−57

doi: 10.1016/j.gene.2018.05.014
[41]

Rawal HC, Kumar S, Mithra SVA, Solanke AU, Nigam D, et al. 2017. High quality unigenes and microsatellite markers from tissue specific transcriptome and development of a database in clusterbean (Cyamopsis tetragonoloba, L. Taub). Genes 8:313

doi: 10.3390/genes8110313
[42]

Kopp F, Mendell JT. 2018. Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393−407

doi: 10.1016/j.cell.2018.01.011
[43]

Wang Z, Yu Q, Shen W, El Mohtar CA, Zhao X, et al. 2018. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biology 18:189

doi: 10.1186/s12870-018-1418-y
[44]

Xie Y, Chen P, Yan Y, Bao C, Li X, et al. 2018. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist 218:201−18

doi: 10.1111/nph.14952
[45]

Geng P, Zhang S, Liu J, Zhao C, Wu J, et al. 2020. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation1. Plant Physiology 182:1272−83

doi: 10.1104/pp.19.01070
[46]

Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, et al. 2001. CYP98A3 from Arabidopsis thaliana Is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. Journal of Biological Chemistry 276:36566−74

doi: 10.1074/jbc.M104047200
[47]

Israel D, Khan S, Warren CR, Zwiazek JJ, Robson TM. 2021. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. Journal of Experimental Botany 72:5066−78

doi: 10.1093/jxb/erab187
[48]

Sato R, Maeshima M. 2019. The ER-localized aquaporin SIP2;1 is involved in pollen germination and pollen tube elongation in Arabidopsis thaliana. Plant Molecular Biology 100:335−49

doi: 10.1007/s11103-019-00865-3
[49]

Schüssler MD, Alexandersson E, Bienert GP, Kichey T, Laursen KH, et al. 2008. The effects of the loss of TIP1;1 and TIP1;2 aquaporins in Arabidopsis thaliana. The Plant Journal 56:756−67

doi: 10.1111/j.1365-313X.2008.03632.x
[50]

Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A. 2018. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145:dev159202

[51]

Yang T, Wang Y, Teotia S, Wang Z, Shi C, et al. 2019. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Scientific Reports 9:2832

doi: 10.1038/s41598-019-39397-7
[52]

Zhu H, Hu F, Wang R, Zhou X, Sze SH, et al. 2011. Arabidopsis Argonaute 10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242−56

doi: 10.1016/j.cell.2011.03.024
[53]

Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology 175:874−85

doi: 10.1104/pp.17.00732
[54]

Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, et al. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics 39:787−91

doi: 10.1038/ng2036
[55]

Yang C, Li D, Mao D, Liu X, Ji C, et al. 2013. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment 36:2207−18

doi: 10.1111/pce.12130
[56]

Cheng Y, Wang L, Abbas M, Huang X, Wang Q, et al. 2021. MicroRNA319-mediated gene regulatory network impacts leaf development and morphogenesis in poplar. Forestry Research 1:4

doi: 10.48130/fr-2021-0004
[57]

Liu C, Ma D, Wang Z, Chen N, Ma X, et al. 2022. MiR395c regulates secondary xylem development through sulfate metabolism in poplar. Frontiers in Plant Science 13:897376

doi: 10.3389/fpls.2022.897376
[58]

Im JH, Ko JH, Kim WC, Crain B, Keathley D, et al. 2021. Mitogen-activated protein kinase 6 negatively regulates secondary wall biosynthesis by modulating MYB46 protein stability in Arabidopsis thaliana. PLoS Genetics 17:e1009510

doi: 10.1371/journal.pgen.1009510
[59]

Ramírez V, García-Andrade J, Vera P. 2011. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. Plant Signaling & Behavior 6:911−13

doi: 10.4161/psb.6.6.15354
[60]

Zhou D, Zhao S, Zhou H, Chen J, Huang L. 2023. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Science 337:111889

doi: 10.1016/j.plantsci.2023.111889
[61]

Liu X, Li D, Zhang D, Yin D, Zhao Y, et al. 2018. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytologist 218:774−88

doi: 10.1111/nph.15023
[62]

Wang H, Niu QW, Wu HW, Liu J, Ye J, et al. 2015. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. The Plant Journal 84:404−16

doi: 10.1111/tpj.13018
[63]

Wang J, Yu W, Yang Y, Li X, Chen T, et al. 2015. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Scientific Reports 5:16946

doi: 10.1038/srep16946
[64]

Qin T, Zhao H, Cui P, Albesher N, Xiong L. 2017. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiology 175:1321−36

doi: 10.1104/pp.17.00574
[65]

Li Q, Shen H, Yuan S, Dai X, Yang C. 2023. miRNAs and lncRNAs in tomato: roles in biotic and abiotic stress responses. Frontiers in Plant Science 13:1094459

doi: 10.3389/fpls.2022.1094459
[66]

Lu X, Chen X, Mu M, Wang J, Wang X, et al. 2016. Genome-wide analysis of long noncoding rnas and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS One 11:e0156723

doi: 10.1371/journal.pone.0156723
[67]

Yang X, Liu C, Niu X, Wang L, Li L, et al. 2022. Research on lncRNA related to drought resistance of Shanlan upland rice. BMC Genomics 23:336

doi: 10.1186/s12864-022-08546-0
[68]

Liu Z, Jia L, Wang H, He Y. 2011. HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. Journal of Experimental Botany 62:4367−81

doi: 10.1093/jxb/err167
[69]

Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. 2023. Modulation of lignin biosynthesis for drought tolerance in plants. Frontiers in Plant Science 14:1116426

doi: 10.3389/fpls.2023.1116426
[70]

Ohtsuka A, Sack L, Taneda H. 2018. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant Cell & Environment 41:342−53

doi: 10.1111/pce.13087
[71]

Wu BF, Li WF, Xu HY, Qi LW, Han SY. 2015. Role of cin-miR2118 in drought stress responses in Caragana intermedia and Tobacco. Gene 574:34−40

doi: 10.1016/j.gene.2015.07.072
[72]

He L, Tang R, Shi X, Wang W, Cao Q, et al. 2019. Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweetpotato. BMC Plant Biology 19:232

doi: 10.1186/s12870-019-1790-2
[73]

Wang Y, Wang Y, Song Z, Zhang H. 2016. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant 9:1395−405

doi: 10.1016/j.molp.2016.07.003