[1]

Chen M, Penfield S. 2018. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014−17

doi: 10.1126/science.aar7361
[2]

Basahi M. 2021. Humic acid improved germination rate, seedling growth and antioxidant system of pea (Pisum sativum L. var. Alicia) grown in water polluted with CdCl2. AIMS Environmental Science 8:358−70

doi: 10.3934/environsci.2021023
[3]

Barros R, Ribeiro D. 2006. Enhancement of ethylene production by dormant seeds of stylosanthes humilis induced to germinate in closed environments. Tropical Grasslands 40:237−43

[4]

Bewley JD. 1997. Seed germination and dormancy. The Plant Cell 9:1055−66

doi: 10.1105/tpc.9.7.1055
[5]

Huang X, Tian T, Chen J, Wang D, Tong B, et al. 2021. Transcriptome analysis of Cinnamomum migao seed germination in medicinal plants of southwest China. BMC Plant Biology 21:270

doi: 10.1186/s12870-021-03020-7
[6]

Nonogaki H. 2014. Seed dormancy and germination − emerging mechanisms and new hypotheses. Frontiers in Plant Science 5:00233

doi: 10.3389/fpls.2014.00233
[7]

Duke SO. 2010. Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal 25:17−30

[8]

Rietveld WJ. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. Journal of Chemical Ecology 9:295−308

doi: 10.1007/BF00988047
[9]

Guo Y, Xiang C, Ye Y, Chen X, Zheng S, et al. 2021. Allelopathy of Eupatorium adenophorum extracts on seed germination and seedling growth of different strawberry varieties. Seed 40:96−101 (in Chinese)

doi: 10.16590/j.cnki.1001-4705.2021.06.096
[10]

Zheng L, Feng Y. 2005. Allelopathic effects of Eupatorium adenophorum Spreng. on seed germination and seedling growth in ten herbaceous species. Acta Ecologica Sinica 25:2782−87 (in Chinese)

[11]

Zhao Y, Chen Z, Wang K, Wang Q, Fan W. 2010. Allelopathy of paulownia and poplar leaves aqueous extracts on crop seed germination. Transactions of the Chinese Society of Agricultural Engineering 26:400−5 (in Chinese)

[12]

Li JY, Zhang Q, Yang XY, Hu WW, Lin RL, et al. 2017. A reappraisal of the content and the differences of phenolic acids between allelopathic and non-allelopathic rice accessions. Allelopathy Journal 40:35−46

doi: 10.26651/2017-40-1-1064
[13]

Fang C, Yu Y, Chen W, Jian X, Wang Q, et al. 2016. Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regulation 79:265−73

doi: 10.1007/s10725-015-0131-1
[14]

Escobar-Bravo R, Lin PA, Waterman JM, Erb M. 2023. Dynamic environmental interactions shaped by vegetative plant volatiles. Natural Product Reports 40:840−65

doi: 10.1039/D2NP00061J
[15]

Kumari S, Chander S, Ram K, Sajana S. 2017. Allelopathy and its effect on fruit crop − a review. International Journal of Current Microbiology and Applied Sciences 6:952−60

doi: 10.20546/ijcmas.2017.612.105
[16]

Molinaro F, Monterumici CM, Ferrero A, Tabasso S, Negre M. 2016. Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L. Journal of Environmental Science and Health, Part B 51:847−52

doi: 10.1080/03601234.2016.1208466
[17]

Tang F, Chen Y, Li D, Zhao J. 2021. Effects of Eucalyptus urophydis essential oil and its main compounds on seed germination of cucumber. Seed 40:107−12 (in Chinese)

doi: 10.16590/j.cnki.1001-4705.2021.11.107
[18]

Zhang RM, Zuo ZJ, Gao PJ, Hou P, Wen GS, et al. 2012. Allelopathic effects of VOCs of Artemisia frigida Willd. on the regeneration of pasture grasses in Inner Mongolia. Journal of Arid Environments 87:212−18

doi: 10.1016/j.jaridenv.2012.04.008
[19]

Oh H, Lee S, Lee HS, Lee DH, Lee SY, et al. 2002. Germination inhibitory constituents from Erigeron annuus. Phytochemistry 61:175−79

doi: 10.1016/S0031-9422(02)00236-4
[20]

Zhang C, Li X, Chen Y, Zhao J, Wan S, et al. 2016. Effects of Eucalyptus litter and roots on the establishment of native tree species in Eucalyptus plantations in South China. Forest Ecology and Management 375:76−83

doi: 10.1016/j.foreco.2016.05.013
[21]

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 2004. A compound from smoke that promotes seed germination. Science 305:977

doi: 10.1126/science.1099944
[22]

Kordali S, Cakir A, Sutay S. 2007. Inhibitory effects of monoterpenes on seed germination and seedling growth. Zeitschrift Für Naturforschung C 62:207−14

doi: 10.1515/znc-2007-3-409
[23]

Ali Q, Perveen R, Saeed F, Manzoor H, Ali S, et al. 2024. Enhancing water stress tolerance of bread wheat during seed germination and seedling emergence: caffeine-induced modulation of antioxidative defense mechanisms. Frontiers in Plant Science 15:1336639

doi: 10.3389/fpls.2024.1336639
[24]

Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y. 2010. Strigolactones as germination stimulants for root parasitic plants. Plant & Cell Physiology 51:1095−103

doi: 10.1093/pcp/pcq055
[25]

Yi Y, Peng Y, Song T, Lu S, Teng Z, et al. 2022. NLP2-NR module associated NO is involved in regulating seed germination in rice under salt stress. Plants 11:795

doi: 10.3390/plants11060795
[26]

Fu Y, Ma L, Li J, Hou D, Zeng B, et al. 2024. Factors influencing seed dormancy and germination and advances in seed priming technology. Plants 13:1319

doi: 10.3390/plants13101319
[27]

Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. 2021. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function 12:14−29

doi: 10.1039/D0FO02324H
[28]

Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. 2023. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Communications Biology 6:1055

doi: 10.1038/s42003-023-05435-4
[29]

Chen Y, Li B, Jia X, Sun S, Su Y, et al. 2022. Differential expression of Calycosin-7-O-β-D-glucoside biosynthesis genes and accumulation of related metabolites in different organs of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao under drought stress. Applied Biochemistry and Biotechnology 194:3182−95

doi: 10.1007/s12010-022-03883-y
[30]

Yoon HI, Kim HY, Kim J, Oh MM, Son JE. 2021. Quantitative analysis of UV-B radiation interception in 3D plant structures and intraindividual distribution of phenolic contents. International Journal of Molecular Sciences 22:2701

doi: 10.3390/ijms22052701
[31]

Muscolo A, Sidari M. 2006. Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant and Soil 284:305−18

doi: 10.1007/s11104-006-0040-1
[32]

Laule O, Fürholz A, Chang HS, Zhu T, Wang X, et al. 2003. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100:6866−71

doi: 10.1073/pnas.1031755100
[33]

Carrero-Carralero C, Ruiz-Matute AI, Sanz J, Ramos L, Sanz ML, et al. 2022. From plant to soil: Quantitative changes in pine and juniper extractive compounds at different transformation stages. Plant and Soil 481:229−51

doi: 10.1007/s11104-022-05631-x
[34]

Huang C, Zhou W, Bian C, Wang L, Li Y, et al. 2022. Degradation and pathways of carvone in soil and water. Molecules 27:2415

doi: 10.3390/molecules27082415
[35]

Rosenkranz M, Chen Y, Zhu P, Vlot AC. 2021. Volatile terpenes - mediators of plant-to-plant communication. Plant Journal 108:617−31

doi: 10.1111/tpj.15453
[36]

Drewer J, Leduning MM, Purser G, Cash JM, Sentian J, et al. 2021. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. Environmental Science and Pollution Research 28:31792−802

doi: 10.1007/s11356-021-13052-z
[37]

Fernandes F, Pereira DM, Guedes de Pinho P, Valentão P, Pereira JA, et al. 2010. Headspace solid-phase microextraction and gas chromatography/ion trap-mass spectrometry applied to a living system: Pieris brassicae fed with kale. Food Chemistry 119:1681−93

doi: 10.1016/j.foodchem.2009.09.046
[38]

Zhang L. 2012. Advances of research on allelopathic potencial of terpenoids in plants. Soil and Environmental Sciences 21:187−93

[39]

Robertson J, Stevens K. 2017. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis. Natural Product Reports 34:62−89

doi: 10.1039/C5NP00076A
[40]

Ping Y, Li X, Xu B, Wei W, Wei W, et al. 2019. Building microbial hosts for heterologous production of N-methylpyrrolinium. ACS Synthetic Biology 8:257−63

doi: 10.1021/acssynbio.8b00483
[41]

Ganbaatar O, Niu Y, Bao W, Hasi A, Da H. 2016. Effects of tomato psyllid infestation on activity of anti-oxidant enzymes and expression levels of defense response related genes in the tomato carrying resistance gene Mi-1.2. Acta Horticulturae Sinica 43:1286−94 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2016-0080
[42]

Wang Y, Luo X, Chu P, Shi H, Wang R, et al. 2023. Cultivation and application of nicotine-degrading bacteria and environmental functioning in tobacco planting soil. Bioresources and Bioprocessing 10:10

doi: 10.1186/s40643-023-00630-x
[43]

Li HH, Inoue M, Nishimura H, Mizutani J, Tsuzuki E. 1993. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. Journal of Chemical Ecology 19:1775−87

doi: 10.1007/BF00982307
[44]

Li X, Gruber MY, Hegedus DD, Lydiate DJ, Gao MJ. 2011. Effects of a coumarin derivative, 4-methylumbelliferone, on seed germination and seedling establishment in Arabidopsis. Journal of Chemical Ecology 37:880−90

doi: 10.1007/s10886-011-9987-3
[45]

Reigosa MJ, Souto XC, Gonz´lez L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation 28:83−88

doi: 10.1023/A:1006269716762
[46]

Ahammed GJ, Li Y, Cheng Y, Liu A, Chen S, et al. 2020. Abscisic acid and gibberellins act antagonistically to mediate epigallocatechin-3-gallate-retarded seed germination and early seedling growth in tomato. Journal of Plant Growth Regulation 39:1414−24

doi: 10.1007/s00344-020-10089-1
[47]

Hong G, Wang J, Hochstetter D, Gao Y, Xu P, et al. 2015. Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway. Physiologia Plantarum 153:432−39

doi: 10.1111/ppl.12256
[48]

Zhou B, Li Y, Li D, Liu N, Ning F, Hou Y. 2010. Effects of abietic acid on seed germination, seedling growth and microbial population in rhizosphere of hot pepper. Acta Agriculturae Boreali-Sinica 25:155−60 (in Chinese)

[49]

Huan Z, Ou Q, Ding L. 2022. Allelopathy and Its mechanism of three natural diterpenes. Bulletin of Botanical Research 42:81−92 (in Chinese)

doi: 10.7525/j.issn.1673-5102.2022.01.009
[50]

Bai L, Wang W, Hua J, Guo Z, Luo S. 2020. Defensive functions of volatile organic compounds and essential oils from northern white-cedar in China. BMC Plant Biology 20:500

doi: 10.1186/s12870-020-02716-6
[51]

Santonja M, Bousquet-Mélou A, Greff S, Ormeño E, Fernandez C. 2019. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecology and Evolution 9:8201−13

doi: 10.1002/ece3.5390
[52]

Braine JW, Curcio GR, Wachowicz CM, Hansel FA. 2012. Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. Journal of Forest Research 17:440−45

doi: 10.1007/s10310-011-0314-1
[53]

Zhao GL. 2007. Effects of alkaloid extract from Peganum multisectum on growth and some physiological characteristics of Zea mays seedling. Acta Prataculturae Sinica 17:75−80

[54]

Liu JX, Hu HB, Zhao GL, Wang X. 2006. Effect of alkaloid extract from Peganum multisectum Bobr on seed germination and seedling growth of wheat (Triticum aestivum L.). Plant Physiology Communications 42:213−16

[55]

Aerts RJ, Snoeijer W, van der Meijden E, Verpoorte R. 1991. Allelopathic inhibition of seed germination by Cinchona alkaloids? Phytochemistry 30:2947−51

doi: 10.1016/S0031-9422(00)98229-3
[56]

Ma J, Xing G, Yang W, Ma L, Gao M, et al. 2012. Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecologica Sinica 32:50−56

doi: 10.1016/j.chnaes.2011.12.004
[57]

Perveen S, Mushtaq MN, Yousaf M, Sarwar N. 2021. Allelopathic hormesis and potent allelochemicals from multipurpose tree Moringa oleifera leaf extract. Plant Biosystems 155:154−58

doi: 10.1080/11263504.2020.1727984
[58]

Abbas T, Nadeem MA, Tanveer A, Chauhan BS. 2017. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Protection 93:69−76

doi: 10.1016/j.cropro.2016.11.020
[59]

Gao Y, Zhu M, Wang H, Li S. 2021. Dynamic changes to endogenous germination inhibitors in Cercis chinensis seeds during dormancy release. HortScience 56:557−62

doi: 10.21273/HORTSCI15723-21
[60]

Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, et al. 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell & Environment 34:980−93

doi: 10.1111/j.1365-3040.2011.02298.x
[61]

Mei S, Zhang M, Ye J, Du J, Jiang Y, et al. 2023. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 35:1110−33

doi: 10.1093/plcell/koac362
[62]

Ahmed N, Zhang Y, Yu H, Zhang M, Zhou Y, et al. 2019. Seed priming with glycine betaine improve seed germination characteristics and antioxidant capacity of wheat (Triticum aestivum L.) seedlings under water-stress conditions. Applied Ecology and Environmental Research 17:8333−50

doi: 10.15666/aeer/1704_83338350
[63]

Buijs G, Kodde J, Groot SPC, Bentsink L. 2018. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. Journal of Experimental Botany 69:3601−8

doi: 10.1093/jxb/ery156
[64]

Bi C, Ma Y, Wu Z, Yu YT, Liang S, et al. 2017. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE1 transcription in seed germination. Plant Molecular Biology 94:197−213

doi: 10.1007/s11103-017-0603-y
[65]

Chen H, Ruan J, Chu P, Fu W, Liang Z, et al. 2020. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant Journal 101:310−23

doi: 10.1111/tpj.14542
[66]

Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, et al. 2011. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. The Plant Cell 23:2196−208

doi: 10.1105/tpc.111.086694
[67]

Chen J, Han FX, Wang F, Zhang H, Shi Z. 2012. Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicology and Environmental Safety 76:193−99

doi: 10.1016/j.ecoenv.2011.09.022
[68]

Abenavoli MR, Cacco G, Sorgonà A, Marabottini R, Paolacci AR, et al. 2006. The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds. Journal of Chemical Ecology 32:489−506

doi: 10.1007/s10886-005-9011-x
[69]

Voegele A, Graeber K, Oracz K, Tarkowská D, Jacquemoud D, et al. 2012. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. Journal of Experimental Botany 63:5337−50

doi: 10.1093/jxb/ers197
[70]

Abrahim D, Braguini WL, Kelmer-Bracht AM, Ishii-Iwamoto EL. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. Journal of Chemical Ecology 26:611−24

doi: 10.1023/A:1005467903297
[71]

Martino LD, Mancini E, Almeida LFRd, Feo VD. 2010. The antigerminative activity of twenty-seven monoterpenes. Molecules 15:6630−37

doi: 10.3390/molecules15096630
[72]

Ma Q, Guo W, Xue Y, Yu S, Lu W, et al. 2020. Effects of phthalic acid and p-hydroxybenzonicacid on seed germination of maize. Plant Physiology Journal 56:294−300 (in Chinese)

doi: 10.13592/j.cnki.ppj.2019.0192
[73]

Fu D, Wu W, Mustafa G, Yang Y, Yang P. 2025. Molecular mechanisms of rice seed germination. New Crops 2:100051

doi: 10.1016/j.ncrops.2024.100051
[74]

Heslop-Harrison G, Nakabayashi K, Espinosa-Ruiz A, Robertson F, Baines R, et al. 2024. Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants. Plant Communications 5:100846

doi: 10.1016/j.xplc.2024.100846
[75]

Zhang W, Lu LY, Hu LY, Cao W, Sun K, et al. 2018. Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant & Cell Physiology 59:1889−904

doi: 10.1093/pcp/pcy107
[76]

Yu H, Liang H, Shen G, Sampietro D, Gao X. 2014. Effects of allelochemicals from tobacco root exudates on seed germination and seedling growth of tobacco. Allelopathy Journal 33:107−19

[77]

Sahu U, Das I, Satpathy G. 2023. Allelopathic impact of aqueous leachate of Eucalyptus globulus L. leaves on seed germination, growth, and biochemical contents of seedling of Eleusine coracana Gaertn. Innovare Journal of Agricultural Sciences 11:10−13

doi: 10.22159/ijags.2023.v11i1.47075
[78]

Krishnan SN, Nayarisseri A, Rajamanickam U. 2018. Biodegradation effects of o-cresol by Pseudomonas monteilii SHY on mustard seed germination. Bioinformation 14:271−78

doi: 10.6026/97320630014271
[79]

Kupidłowska E, Gniazdowska A, Stępień J, Corbineau F, Vinel D, et al. 2006. Impact of sunflower (Helianthus annuus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. Journal of Chemical Ecology 32:2569−83

doi: 10.1007/s10886-006-9183-z
[80]

Malloch AJC. 1986. Seeds: physiology of development and germination. Journal of Ecology 74:905−06

doi: 10.2307/2260407
[81]

Zheng J, Ramirez VD. 2000. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology 130:1115−23

doi: 10.1038/sj.bjp.0703397
[82]

Li J, Chen L, Chen Q, Miao Y, Peng Z, et al. 2021. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific Reports 11:4303

doi: 10.1038/s41598-021-83752-6
[83]

Liu J, Chen J, Sun Y, Tong B, Guan R, et al. 2019. Allelopathic effects of aqueous extract of Ageratina adenophora on seven native plant seedlings in growth and chlorophyll. Guihaia 39:79−86 (in Chinese)

doi: 10.11931/guihaia.gxzw201802005
[84]

Patterson DT. 1981. Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max). Weed Science 29:53−59

doi: 10.1017/S0043174500025820
[85]

Yu JQ, Ye SF, Zhang MF, Hu WH. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology 31:129−39

doi: 10.1016/S0305-1978(02)00150-3
[86]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[87]

Oracz K, Bailly C, Gniazdowska A, Côme D, Corbineau F, et al. 2007. Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. Journal of Chemical Ecology 33:251−64

doi: 10.1007/s10886-006-9222-9
[88]

Baziramakenga R, Simard RR, Leroux GD. 1994. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. Journal of Chemical Ecology 20:2821−33

doi: 10.1007/BF02098391
[89]

Huang L, Li X, Zhang W, Ung N, Liu N, et al. 2020. Endosidin20 targets the cellulose synthase catalytic domain to inhibit cellulose biosynthesis. The Plant Cell 32:2141−57

doi: 10.1105/tpc.20.00202
[90]

Zhang Q, Zhang A, Yang L, Wei J, Bei J, et al. 2024. Identification of XTH family genes and expression analysis of endosperm weakening in lettuce (Lactuca sativa L.). Agronomy 14:324

doi: 10.3390/agronomy14020324
[91]

Han F, Wang H, Bian YX, Li YB. 2008. Chemical components and their allelopathic effects of the volatiles from Larix principisrupprechtii leaves and branches. Chinese Journal of Applied Ecology 19:2327−32 (in Chinese)

[92]

Long Q, Li Y, Gao Y, Ding W. 2016. Allelopathy of phenolic compounds on Panax ginseng seeds. Modern Chinese Medicine 18:92−96

[93]

Zhang Z, Sun Z, Chen W, Lin W. 2013. Allelopathic effects of organic acid allelochemicals on melon. Acta Ecologica Sinica 33:4591−98

doi: 10.5846/stxb201204270609
[94]

Ma Y, Liao L, Yang Y, Wang S, Gao H, Chen C. 1998. Effect of vanillin on the growth of Chinese-fir (Cunninghamia lanceolata)seedlings. Chinese Journal of Applied Ecology 9:128−32 (in Chinese)

[95]

Hu W, Ma D, Wang Y, Zhang H, Li Q. 2011. Allelopathicpotential of volatile oil from Chenopodium ambrosioides L. on root tip cells of Vicia faba. Acta Ecologica Sinica 31:3684−90 (in Chinese)

[96]

Han CM, Pan KW, Wu N, Wang JC, Li W. 2008. Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Scientia Horticulturae 116:330−36

doi: 10.1016/j.scienta.2008.01.005
[97]

Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31:1187−203

doi: 10.1007/s10886-005-4256-y
[98]

Xie Z, Zhao S, Li Y, Deng Y, Shi Y, et al. 2023. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. Nature Plants 9:1481−99

doi: 10.1038/s41477-023-01499-6
[99]

Wang J, Wang B, Shang F, Su L, Zhao S, et al. 2022. Screening, identification and antimicrobial activity of microbial strains degrading autotoxic phenolic acids in the rhizosphere of vanilla. Journal of Tropical Biology 13:595−604 (in Chinese)

doi: 10.15886/j.cnki.rdswxb.2022.06.009
[100]

Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, et al. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal 50:452−65

doi: 10.1111/j.1365-313X.2007.03063.x
[101]

Xiang F, Liu WC, Liu X, Song Y, Zhang Y, et al. 2023. Direct balancing of lipid mobilization and reactive oxygen species production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination. New Phytologist 237:2104−17

doi: 10.1111/nph.18669
[102]

Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, et al. 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology 150:1855−65

doi: 10.1104/pp.109.139204
[103]

Galván D'Alessandro L, Vauchel P, Przybylski R, Chataigné G, Nikov I, et al. 2013. Integrated process extraction–adsorption for selective recovery of antioxidant phenolics from Aronia melanocarpa berries. Separation and Purification Technology 120:92−101

doi: 10.1016/j.seppur.2013.09.027
[104]

Ren Jl, Yang L, Qiu S, Zhang AH, Wang XJ. 2023. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends in Endocrinology & Metabolism 34:146−57

doi: 10.1016/j.tem.2023.01.005
[105]

Wang T, Wang Q, Li P, Yang H. 2020. High-speed countercurrent chromatography-based method for simultaneous recovery and separation of natural products from deep eutectic solvent extracts. ACS Sustainable Chemistry & Engineering 8:2073−80

doi: 10.1021/acssuschemeng.9b06893
[106]

Meng X, Huang X, Li Q, Wang E, Chen C. 2023. Application of UPLC-Orbitrap-HRMS targeted metabolomics in screening of allelochemicals and model plants of ginseng. Journal of Plant Physiology 285:153996

doi: 10.1016/j.jplph.2023.153996
[107]

Qiao B, Nie S, Li Q, Majeed Z, Cheng J, et al. 2022. Quick and in situ detection of different polar allelochemicals in Taxus soil by microdialysis combined with UPLC-MS/MS. Journal of Agricultural and Food Chemistry 70:16435−45

doi: 10.1021/acs.jafc.2c06912
[108]

Yang Y, Creedon N, O'Riordan A, Lovera P. 2021. Surface enhanced Raman spectroscopy: applications in agriculture and food safety. Photonics 8:568

doi: 10.3390/photonics8120568
[109]

Sharma V, Krishnan V. 2017. Sensitive detection of biomolecules by surface enhanced Raman scattering using plant leaves as natural substrates. EPJ Web of Conferences 139:00006

doi: 10.1051/epjconf/201713900006
[110]

Brentan Silva D, Aschenbrenner AK, Lopes NP, Spring O. 2017. Direct analyses of secondary metabolites by mass spectrometry imaging (MSI) from sunflower (Helianthus annuus L.) trichomes. Molecules 22:774

doi: 10.3390/molecules22050774
[111]

Horn PJ, Chapman KD. 2024. Imaging plant metabolism in situ. Journal of Experimental Botany 75:1654−70

doi: 10.1093/jxb/erad423
[112]

Sgobba E, Daguerre Y, Giampà M. 2021. Unravel the local complexity of biological environments by MALDI mass spectrometry imaging. International Journal of Molecular Sciences 22:12393

doi: 10.3390/ijms222212393
[113]

Kamat V, Burton L, Venkadesh V, Jayachandran K, Bhansali S. 2023. Enabling smart agriculture through sensor-integrated microfluidic chip to monitor nutrient uptake in plants. ECS Sensors Plus 2:043201

doi: 10.1149/2754-2726/ad024e
[114]

Biswas S, Dutta D. 2019. Phytotoxic effects of glufosinate ammonium on cotton and soil micro-flora. Indian Journal of Weed Science 51:362

doi: 10.5958/0974-8164.2019.00076.5
[115]

Hussain MI, Danish S, Sánchez-Moreiras AM, Vicente Ó, Jabran K, et al. 2021. Unraveling sorghum allelopathy in agriculture: concepts and implications. Plants 10:1795

doi: 10.3390/plants10091795
[116]

Ren S, Xia Y, Wang X, Zou Y, Li Z, et al. 2024. Development and application of diffusive gradients in thin-films for in situ monitoring of 6PPD-Quinone in urban waters. Water Research 266:122408

doi: 10.1016/j.watres.2024.122408