[1]

Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus? Trends in Microbiology 13:278−284

doi: 10.1016/j.tim.2005.04.003
[2]

Strumillo ST, Kartavykh D, de Carvalho FF Jr, Cruz NC, de Souza Teodoro AC, et al. 2021. Host–virus interaction and viral evasion. Cell Biology International 45:1124−1147

doi: 10.1002/cbin.11565
[3]

Lamers MM, Haagmans BL. 2022. SARS-CoV-2 pathogenesis. Nature Reviews Microbiology 20:270−284

doi: 10.1038/s41579-022-00713-0
[4]

Al Hajjar S, McIntosh K. 2010. The first influenza pandemic of the 21st century. Annals of Saudi Medicine 30:1−10

doi: 10.4103/0256-4947.59365
[5]

Feldmann H, Jones S, Klenk HD, Schnittler HJ. 2003. Ebola virus: from discovery to vaccine. Nature Reviews Immunology 3:677−685

doi: 10.1038/nri1154
[6]

Morens DM, Fauci AS. 2020. Emerging pandemic diseases: how we got to COVID-19. Cell 182:1077−1092

doi: 10.1016/j.cell.2020.08.021
[7]

Dronina J, Samukaite-Bubniene U, Ramanavicius A. 2021. Advances and insights in the diagnosis of viral infections. Journal of Nanobiotechnology 19:348

doi: 10.1186/s12951-021-01081-2
[8]

Mok DZL, Chan KR. 2020. The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses 12:520

doi: 10.3390/v12050520
[9]

Balfour HH Jr. 1999. Antiviral drugs. The New England Journal of Medicine 340:1255−1268

doi: 10.1056/NEJM199904223401608
[10]

Aledort JE, Lurie N, Wasserman J, Bozzette SA. 2007. Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base. BMC Public Health 7:208

doi: 10.1186/1471-2458-7-208
[11]

Mina MJ, Parker R, Larremore DB. 2020. Rethinking covid-19 test sensitivity — a strategy for containment. The New England Journal of Medicine 383:e120

doi: 10.1056/NEJMp2025631
[12]

Papafragkou E, Hewitt J, Park GW, Greening G, Vinjé J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8:e63485

doi: 10.1371/journal.pone.0063485
[13]

Gupta E, Pandey P, Kumar A, Sharma M, Sarin S. 2015. Correlation between two chemiluminescence based assays for quantification of hepatitis B surface antigen in patients with chronic hepatitis B infection. Indian Journal of Medical Microbiology 33:96−100

doi: 10.4103/0255-0857.148400
[14]

Renois F, Talmud D, Huguenin A, Moutte L, Strady C, et al. 2010. Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems. Journal of Clinical Microbiology 48:3836−3842

doi: 10.1128/jcm.00733-10
[15]

Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. 2020. Biosensors-on-chip: an up-to-date review. Molecules 25:6013

doi: 10.3390/molecules25246013
[16]

Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. 2013. Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews 42:8733−8768

doi: 10.1039/C3CS60141B
[17]

Mehrotra P. 2016. Biosensors and their applications – a review. Journal of Oral Biology and Craniofacial Research 6:153−159

doi: 10.1016/j.jobcr.2015.12.002
[18]

Thévenot DR, Toth K, Durst RA, Wilson GS. 2001. Electrochemical biosensors: recommended definitions and classification. Analytical Letters 34:635−659

doi: 10.1081/AL-100103209
[19]

Gu N, Liu S. 2020. Introduction to biosensors. Journal of Materials Chemistry B 8:3168−3170

doi: 10.1039/D0TB90051F
[20]

Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818−822

doi: 10.1038/346818a0
[21]

Kozlowski S, Swann P. 2006. Current and future issues in the manufacturing and development of monoclonal antibodies. Advanced Drug Delivery Reviews 58:707−722

doi: 10.1016/j.addr.2006.05.002
[22]

Zhang J, Pei W, Xu Q, Jiang H, Chen J. 2022. Desolvation-induced formation of recombinant camel serum albumin-based nanocomposite for glutathione colorimetric determination. Sensors and Actuators B: Chemical 357:131417

doi: 10.1016/j.snb.2022.131417
[23]

Goggins S, Frost CG. 2016. Approaches towards molecular amplification for sensing. Analyst 141:3157−3218

doi: 10.1039/C6AN00348F
[24]

Dunn MR, Jimenez RM, Chaput JC. 2017. Analysis of aptamer discovery and technology. Nature Reviews Chemistry 1:76

doi: 10.1038/s41570-017-0076
[25]

Tombelli S, Minunni M, Mascini M. 2005. Analytical applications of aptamers. Biosensors and Bioelectronics 20:2424−2434

doi: 10.1016/j.bios.2004.11.006
[26]

Musheev MU, Krylov SN. 2006. Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Analytica Chimica Acta 564:91−96

doi: 10.1016/j.aca.2005.09.069
[27]

Lyu M, Chan CH, Chen Z, Liu Y, Yu Y. 2025. Advantages, applications, and future directions of in vivo aptamer SELEX: a review. Molecular Therapy Nucleic Acids 36:102575

doi: 10.1016/j.omtn.2025.102575
[28]

Sampson T. 2003. Aptamers and SELEX: the technology. World Patent Information 25:123−129

doi: 10.1016/S0172-2190(03)00035-8
[29]

Shao K, Ding W, Wang F, Li H, Ma D, et al. 2011. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS One 6:e24910

doi: 10.1371/journal.pone.0024910
[30]

Wang J, Gong Q, Maheshwari N, Eisenstein M, Arcila ML, et al. 2014. Particle display: a quantitative screening method for generating high‐affinity aptamers. Angewandte Chemie International Edition 53:4796−4801

doi: 10.1002/anie.201309334
[31]

Zhang Z, Li J, Gu J, Amini R, Stacey HD, et al. 2022. A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern. Chemistry – A European Journal 28:e202200078

doi: 10.1002/chem.202200078
[32]

DeRosa MC, Lin A, Mallikaratchy P, McConnell EM, McKeague M, et al. 2023. In vitro selection of aptamers and their applications. Nature Reviews Methods Primers 3:54

doi: 10.1038/s43586-023-00238-7
[33]

Cennamo N, Pasquardini L, Arcadio F, Lunelli L, Vanzetti L, et al. 2021. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta 233:122532

doi: 10.1016/j.talanta.2021.122532
[34]

Li J, Zhang Z, Gu J, Amini R, Mansfield AG, et al. 2022. Three on three: universal and high-affinity molecular recognition of the symmetric homotrimeric spike protein of SARS-CoV-2 with a symmetric homotrimeric aptamer. Journal of the American Chemical Society 144:23465−23473

doi: 10.1021/jacs.2c09870
[35]

Kim SH, Lee J, Lee BH, Song CS, Gu MB. 2019. Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosensors and Bioelectronics 134:123−129

doi: 10.1016/j.bios.2019.03.061
[36]

Song K, Xue W, Li X, Chang Y, Liu M. 2024. Self-assembly of single-virus SERS hotspots for highly sensitive in situ detection of SARS-CoV-2 on solid surfaces. Analytical Chemistry 96:8830−8836

doi: 10.1021/acs.analchem.4c01607
[37]

Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, et al. 2021. Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell 184:2348−2361.e6

doi: 10.1016/j.cell.2021.02.037
[38]

Rajsri KS, McRae MP, Simmons GW, Christodoulides NJ, Matz H, et al. 2022. A Rapid and sensitive microfluidics-based tool for seroprevalence immunity assessment of COVID-19 and vaccination-induced humoral antibody response at the point of care. Biosensors 12:621

doi: 10.3390/bios12080621
[39]

Jones JE, Le Sage V, Lakdawala SS. 2021. Viral and host heterogeneity and their effects on the viral life cycle. Nature Reviews Microbiology 19:272−282

doi: 10.1038/s41579-020-00449-9
[40]

Chen Y, Wu X, Xu C, Huang J, Zhang L, et al. 2025. Pathogen virulence genes: advances, challenges and future directions in infectious disease research (Review). International Journal of Molecular Medicine 56:173

doi: 10.3892/ijmm.2025.5614
[41]

O'Steen MR, Kolpashchikov DM. 2022. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer. Sensors and Actuators Reports 4:100125

doi: 10.1016/j.snr.2022.100125
[42]

Kohlberger M, Gadermaier G. 2022. SELEX: critical factors and optimization strategies for successful aptamer selection. Biotechnology and Applied Biochemistry 69:1771−1792

doi: 10.1002/bab.2244
[43]

Narayan C, Kwon J, Kim C, Kim SJ, Jang SK. 2020. Virus-based SELEX (viro-SELEX) allows development of aptamers targeting knotty proteins. Analyst 145:1473−1482

doi: 10.1039/C9AN01943J
[44]

Lou B, Liu Y, Shi M, Chen J, Li K, et al. 2022. Aptamer-based biosensors for virus protein detection. TrAC Trends in Analytical Chemistry 157:116738

doi: 10.1016/j.trac.2022.116738
[45]

Li N, Wang X, Tibbs J, Che C, Peinetti AS, et al. 2022. Label-free digital detection of intact virions by enhanced scattering microscopy. Journal of the American Chemical Society 144:1498−1502

doi: 10.1021/jacs.1c09579
[46]

Bruno JG. 1997. In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection. Biochemical and Biophysical Research Communications 234:117−120

doi: 10.1006/bbrc.1997.6517
[47]

Martin JA, Chávez JL, Chushak Y, Chapleau RR, Hagen J, et al. 2014. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Analytical and Bioanalytical Chemistry 406:4637−4647

doi: 10.1007/s00216-014-7883-8
[48]

Shrikrishna NS, Halder S, Kesarwani V, Nagamani K, Gandhi S. 2024. Unveiling the potential: high-affinity aptamers for point of care detection of SARS-CoV-2 RBD protein and it's validation in clinical samples. Chemical Engineering Journal 493:152841

doi: 10.1016/j.cej.2024.152841
[49]

Xi Z, Huang R, Li Z, He N, Wang T, et al. 2015. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Applied Materials & Interfaces 7:11215−11223

doi: 10.1021/acsami.5b01180
[50]

Santiago-Maldonado X, Rodríguez-Martínez JA, López L, Cunci L, Bayro M, et al. 2024. Selection, characterization, and biosensing applications of DNA aptamers targeting cyanotoxin BMAA. RSC Advances 14:13787−13800

doi: 10.1039/D4RA02384F
[51]

Zhu C, Li L, Yang G, Fang S, Liu M, et al. 2019. Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection. Analytica Chimica Acta 1070:112−122

doi: 10.1016/j.aca.2019.04.034
[52]

Yue Y, Zhang D, Tian K, Ni D, Guo F, et al. 2023. Screening and evaluation of thiamethoxam aptamer based on pressurized GO-SELEX and its sensor application. Biosensors 13:155

doi: 10.3390/bios13020155
[53]

Mendonsa SD, Bowser MT. 2004. In vitro evolution of functional DNA using capillary electrophoresis. Journal of the American Chemical Society 126:20−21

doi: 10.1021/ja037832s
[54]

Martínez-Roque MA, Franco-Urquijo PA, García-Velásquez VM, Choukeife M, Mayer G, et al. 2022. DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection. Analytical Biochemistry 645:114633

doi: 10.1016/j.ab.2022.114633
[55]

Chang AL, McKeague M, Liang JC, Smolke CD. 2014. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Analytical Chemistry 86:3273−3278

doi: 10.1021/ac5001527
[56]

Citartan M. 2021. Aptamers as the powerhouse of dot blot assays. Talanta 232:122436

doi: 10.1016/j.talanta.2021.122436
[57]

Li J, Zhang Z, Gu J, Stacey HD, Ang JC, et al. 2021. Diverse high-affinity DNA aptamers for wild-type and B. 1. 1. 7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Research 49:7267−7279

doi: 10.1093/nar/gkab574
[58]

Liu X, Wang YL, Wu J, Qi J, Zeng Z, et al. 2021. Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection. Angewandte Chemie International Edition 60:10273−10278

doi: 10.1002/anie.202100345
[59]

Chen X, Zhang Y, Shi Y, Niu T, Li B, et al. 2021. Evolution of DNA aptamers against esophageal squamous cell carcinoma using cell-SELEX. Analyst 146:4180−4187

doi: 10.1039/D1AN00634G
[60]

Fa Y, Guan M, Zhao H, Li F, Liu H. 2019. Affinity analysis between trypsin and aptamers using surface plasmon resonance competition experiments in a steady state. Analytical Methods 11:3061−3065

doi: 10.1039/C9AY00861F
[61]

Uppal GK, Poolsup S, Zaripov E, Gu Y, Berezovski MV. 2024. Comparative analysis of aptamers binding to SARS-CoV-2 N protein using capillary electrophoresis and bio-layer interferometry. Analytical and Bioanalytical Chemistry 416:1697−1705

doi: 10.1007/s00216-024-05174-3
[62]

Li Y, Lee HJ, Corn RM. 2006. Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging. Nucleic Acids Research 34:6416−6424

doi: 10.1093/nar/gkl738
[63]

Mauriz E. 2025. Trends and challenges of SPR aptasensors in viral diagnostics: a systematic review and meta-analysis. Biosensors 15:245

doi: 10.3390/bios15040245
[64]

Lu X, Li W, Li P, Li Y, Gou Y, et al. 2025. Selection and identification of an ssDNA aptamer against influenza B virus hemagglutinin protein. Virology Journal 22:64

doi: 10.1186/s12985-025-02657-2
[65]

Jug A, Bratkovič T, Ilaš J. 2024. Biolayer interferometry and its applications in drug discovery and development. TrAC Trends in Analytical Chemistry 176:117741

doi: 10.1016/j.trac.2024.117741
[66]

Paniel N, Baudart J, Hayat A, Barthelmebs L. 2013. Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 64:229−240

doi: 10.1016/j.ymeth.2013.07.001
[67]

Gogola JL, Martins G, Gevaerd A, Blanes L, Cardoso J, et al. 2021. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Analytica Chimica Acta 1166:338548

doi: 10.1016/j.aca.2021.338548
[68]

Dolai S, Tabib-Azar M. 2020. Whole virus detection using aptamers and paper-based sensor potentiometry. Medical Devices & Sensors 3:e10112

doi: 10.1002/mds3.10112
[69]

Kwon N, Lee S, Jang M, Lee JH, Park C, et al. 2024. Synthesis of truncated DNA aptamer and its application to an electrochemical biosensor consisting of an aptamer and a MXene heterolayer for yellow fever virus. BioChip Journal 18:93−102

doi: 10.1007/s13206-023-00133-z
[70]

Peinetti AS, Lake RJ, Cong W, Cooper L, Wu Y, et al. 2021. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances 7:eabh2848

doi: 10.1126/sciadv.abh2848
[71]

Jiang H, Sun Z, Zhang C, Weng X. 2022. 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites. Sensors and Actuators B: Chemical 354:131232

doi: 10.1016/j.snb.2021.131232
[72]

Giamberardino A, Labib M, Hassan EM, Tetro JA, Springthorpe S, et al. 2013. Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087

doi: 10.1371/journal.pone.0079087
[73]

Chekin F, Bagga K, Subramanian P, Jijie R, Singh SK, et al. 2018. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: application to human papillomavirus (HPV). Sensors and Actuators B: Chemical 262:991−1000

doi: 10.1016/j.snb.2018.02.065
[74]

Aspermair P, Mishyn V, Bintinger J, Happy H, Bagga K, et al. 2021. Reduced graphene oxide–based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Analytical and Bioanalytical Chemistry 413:779−787

doi: 10.1007/s00216-020-02879-z
[75]

Park H, Kwon N, Park G, Jang M, Kwon Y, et al. 2023. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum. Bioelectrochemistry 154:108540

doi: 10.1016/j.bioelechem.2023.108540
[76]

Park H, Lee H, Lee M, Baek C, Park JA, et al. 2023. Synthesis of isolated DNA aptamer and its application of AC-electrothermal flow-based rapid biosensor for the detection of dengue virus in a spiked sample. Bioconjugate Chemistry 34:1486−1497

doi: 10.1021/acs.bioconjchem.3c00249
[77]

Zhang Z, Pandey R, Li J, Gu J, White D, et al. 2021. High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in unprocessed saliva. Angewandte Chemie International Edition 60:24266−24274

doi: 10.1002/anie.202110819
[78]

Jiang ZW, Zhao TT, Li CM, Li YF, Huang CZ. 2021. 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection. ACS Applied Materials & Interfaces 13:49754−49761

doi: 10.1021/acsami.1c17574
[79]

Lim J, Son SU, Ki J, Kim S, Lee J, et al. 2024. Dual structure-switching aptamer-mediated signal amplification cascade for SARS-CoV-2 detection. Biosensors and Bioelectronics 259:116375

doi: 10.1016/j.bios.2024.116375
[80]

Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus LA. 2014. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9:e106805

doi: 10.1371/journal.pone.0106805
[81]

Huang R, Xi Z, Deng Y, He N. 2016. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen. Scientific Reports 6:31103

doi: 10.1038/srep31103
[82]

Zhang Y, Mou Y, Chen M, Lin X, Zhao Y, et al. 2024. Binary split fluorescent biosensor based on lettuce DNA aptamer for label-free and enzyme-free analysis of hepatitis B viral DNA. Analytical Methods 16:4561−4569

doi: 10.1039/D4AY00713A
[83]

Yang G, Li W, Zhang S, Hu B, Huang Z. 2024. Highly-efficient selection of aptamers for detecting various HPV subtypes in clinical samples. Talanta 266:125039

doi: 10.1016/j.talanta.2023.125039
[84]

Lee JM, Kim CR, Kim S, Min J, Lee MH, et al. 2021. Mix-and-read, one-minute SARS-CoV-2 diagnostic assay: development of PIFE-based aptasensor. Chemical Communications 57:10222−10225

doi: 10.1039/D1CC04066A
[85]

Pramanik A, Gao Y, Patibandla S, Mitra D, McCandless MG, et al. 2021. Aptamer conjugated gold nanostar-based distance-dependent nanoparticle surface energy transfer spectroscopy for ultrasensitive detection and inactivation of Corona virus. The Journal of Physical Chemistry Letters 12:2166−2171

doi: 10.1021/acs.jpclett.0c03570
[86]

Hu C, Li S, Zhou J, Wei D, Liu X, et al. 2024. In vitro SELEX and application of an African swine fever virus (ASFV) p30 protein specific aptamer. Scientific Reports 14:4078

doi: 10.1038/s41598-024-53619-7
[87]

Rabiei P, Mohabatkar H, Behbahani M. 2024. A label-free G-quadruplex aptamer/gold nanoparticle-based colorimetric biosensor for rapid detection of bovine viral diarrhea virus genotype 1. PLoS One 19:e0293561

doi: 10.1371/journal.pone.0293561
[88]

Yeom G, Kang J, Jang H, Nam HY, Kim MG, et al. 2019. Development of DNA aptamers against the nucleocapsid protein of severe fever with thrombocytopenia syndrome virus for diagnostic application: catalytic signal amplification using replication protein A-conjugated liposomes. Analytical Chemistry 91:13772−13779

doi: 10.1021/acs.analchem.9b03210
[89]

Wang Q, Li J, Zhang Z, Amini R, Derdall A, et al. 2025. Fighting mutations with mutations: evolutionarily adapting a DNA aptamer for high-affinity recognition of mutated spike proteins of SARS-CoV-2. Angewandte Chemie International Edition 64:e202415226

doi: 10.1002/anie.202415226
[90]

Chang D, Li J, Liu R, Liu M, Tram K, et al. 2023. A colorimetric biosensing platform with aptamers, rolling circle amplification and urease-mediated litmus test. Angewandte Chemie International Edition 62:e202315185

doi: 10.1002/anie.202315185
[91]

Liu R, Li J, Gu J, Salena BJ, Li Y. 2024. Higher affinity enables more accurate detection of SARS-CoV-2 in human saliva using aptamer-based litmus test. Angewandte Chemie International Edition 63:e202407049

doi: 10.1002/anie.202407049
[92]

Rizvi AS, Murtaza G, Xu X, Gao P, Qiu L, et al. 2023. Aptamer-linked photonic crystal assay for high-throughput screening of HIV and SARS-CoV-2. Analytical Chemistry 95:917−923

doi: 10.1021/acs.analchem.2c03467
[93]

Abbasi AD, Hussain Z, Yang KL. 2021. Aptamer laden liquid crystals biosensing platform for the detection of HIV-1 glycoprotein-120. Molecules 26:2893

doi: 10.3390/molecules26102893
[94]

Caglayan MO, Üstündağ Z. 2020. Spectrophotometric ellipsometry based Tat-protein RNA-aptasensor for HIV-1 diagnosis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 227:117748

doi: 10.1016/j.saa.2019.117748
[95]

Kang J, Yeom G, Jang H, Park CJ, Kim MG. 2020. Highly sensitive and universal detection strategy based on a colorimetric assay using target-specific heterogeneous sandwich DNA aptamer. Analytica Chimica Acta 1123:73−80

doi: 10.1016/j.aca.2020.05.012
[96]

Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ. 2010. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135:845−867

doi: 10.1039/B916888E
[97]

Bai H, Wang R, Hargis B, Lu H, Li Y. 2012. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12:12506−12518

doi: 10.3390/s120912506
[98]

Kim S, Lee S, Lee HJ. 2018. An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein. Sensors and Actuators B: Chemical 273:1029−1036

doi: 10.1016/j.snb.2018.06.108
[99]

Bhardwaj J, Chaudhary N, Kim H, Jang J. 2019. Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta 1064:94−103

doi: 10.1016/j.aca.2019.03.005
[100]

Chen H, Park SG, Choi N, Moon JI, Dang H, et al. 2020. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosensors and Bioelectronics 167:112496

doi: 10.1016/j.bios.2020.112496
[101]

Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, et al. 2021. SERS-based colloidal aptasensors for quantitative determination of influenza virus. International Journal of Molecular Sciences 22:1842

doi: 10.3390/ijms22041842
[102]

Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, et al. 2022. Advances in aptamer-based biosensors and cell-internalizing SELEX technology for diagnostic and therapeutic application. Biosensors 12:922

doi: 10.3390/bios12110922
[103]

Economou A, Kokkinos C, Bousiakou L, Hianik T. 2023. Paper-based aptasensors: working principles, detection modes, and applications. Sensors 23:7786

doi: 10.3390/s23187786
[104]

Kaur H, Shorie M. 2019. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Advances 1:2123−2138

doi: 10.1039/C9NA00153K
[105]

Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW. 2006. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Analytical Chemistry 78:5671−5677

doi: 10.1021/ac0601819
[106]

Liu R, Yang Z, Guo Q, Zhao J, Ma J, et al. 2015. Signaling-probe displacement electrochemical aptamer-based sensor (SD-EAB) for detection of nanomolar kanamycin A. Electrochimica Acta 182:516−523

doi: 10.1016/j.electacta.2015.09.140
[107]

Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, et al. 2009. Challenges of electrochemical impedance spectroscopy in protein biosensing. Analytical Chemistry 81:3944−3949

doi: 10.1021/ac9002358
[108]

Labib M, Zamay AS, Muharemagic D, Chechik A, Bell JC, et al. 2012. Electrochemical sensing of aptamer-facilitated virus immunoshielding. Analytical Chemistry 84:1677−1686

doi: 10.1021/ac202978r
[109]

Mina MJ, Andersen KG. 2021. COVID-19 testing: one size does not fit all. Science 371:126−127

doi: 10.1126/science.abe9187
[110]

Stokes W, Berenger BM, Portnoy D, Scott B, Szelewicki J, et al. 2021. Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. European Journal of Clinical Microbiology & Infectious Diseases 40:1721−1726

doi: 10.1007/s10096-021-04202-9
[111]

Napit R, Jaysawal SK, Chowdhury R, Catague J, Melke H, et al. 2025. Aptasensors and advancement in molecular recognition technology. Advanced Materials Technologies 10:2400504

doi: 10.1002/admt.202400504
[112]

Huang R, Yin LK, Yang C, Wang ZL, Ni RM, et al. 2025. A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence. Analytical and Bioanalytical Chemistry 417:2333−2343

doi: 10.1007/s00216-025-05823-1
[113]

Chen S, Cai G, Gong X, Wang L, Cai C, et al. 2022. Non-autofluorescence detection of H5N1 virus using photochemical aptamer sensors based on persistent luminescent nanoparticles. ACS Applied Materials & Interfaces 14:46964−46971

doi: 10.1021/acsami.2c12088
[114]

Li L, Song M, Lao X, Pang SY, Liu Y, et al. 2022. Rapid and ultrasensitive detection of SARS-CoV-2 spike protein based on upconversion luminescence biosensor for COVID-19 point-of-care diagnostics. Materials & Design 223:111263

doi: 10.1016/j.matdes.2022.111263
[115]

Liu LS, Wang F, Ge Y, Lo PK. 2021. Recent developments in aptasensors for diagnostic applications. ACS Applied Materials & Interfaces 13:9329−9358

doi: 10.1021/acsami.0c14788
[116]

Akki S, Werth CJ. 2018. Critical review: DNA aptasensors, are they ready for monitoring organic pollutants in natural and treated water sources? Environmental Science & Technology 52:8989−9007

doi: 10.1021/acs.est.8b00558
[117]

Zhang F, Liu J. 2021. Label-free colorimetric biosensors based on aptamers and gold nanoparticles: a critical review. Analysis & Sensing 1:30−43

doi: 10.1002/anse.202000023
[118]

Liu R, Li J, Salena BJ, Li Y. 2025. Aptamer and DNAzyme based colorimetric biosensors for pathogen detection. Angewandte Chemie International Edition 64:e202418725

doi: 10.1002/anie.202418725
[119]

Tian J, Liang Z, Hu O, He Q, Sun D, et al. 2021. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta 387:138553

doi: 10.1016/j.electacta.2021.138553
[120]

Zhang X, Guan L, Xu Z, Wang H, Wei X, et al. 2025. Aptamer based lateral flow biosensor for rapid detection of largemouth bass virus. Frontiers in Microbiology 16:1643764

doi: 10.3389/fmicb.2025.1643764
[121]

Liu J, Qin Q, Zhang X, Li C, Yu Y, et al. 2020. Development of a novel lateral flow biosensor combined with aptamer-based isolation: application for rapid detection of grouper nervous necrosis virus. Frontiers in Microbiology 11:886

doi: 10.3389/fmicb.2020.00886
[122]

Cooper MA. 2002. Optical biosensors in drug discovery. Nature Reviews Drug Discovery 1:515−528

doi: 10.1038/nrd838
[123]

Nguyen HH, Park J, Kang S, Kim M. 2015. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481−10510

doi: 10.3390/s150510481
[124]

Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA. 2000. HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Molecular and Cellular Biology 20:4765−4772

doi: 10.1128/MCB.20.13.4765-4772.2000
[125]

Katsamba PS, Myszka DG, Laird-Offringa IA. 2001. Two functionally distinct steps mediate high affinity binding of U1A protein to U1 hairpin II RNA. Journal of Biological Chemistry 276:21476−21481

doi: 10.1074/jbc.M101624200
[126]

Misono TS, Kumar PKR. 2005. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Analytical Biochemistry 342:312−317

doi: 10.1016/j.ab.2005.04.013
[127]

Zheng S, Kim DK, Park TJ, Lee SJ, Lee SY. 2010. Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins. Talanta 82:803−809

doi: 10.1016/j.talanta.2010.05.059
[128]

Lautner G, Balogh Z, Bardóczy V, Mészáros T, Gyurcsányi RE. 2010. Aptamer -based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918−926

doi: 10.1039/B922829B
[129]

Hianik T, Wang J. 2009. Electrochemical aptasensors – recent achievements and perspectives. Electroanalysis 21:1223−1235

doi: 10.1002/elan.200904566
[130]

Fu X, Cheng Z, Yu J, Choo P, Chen L, et al. 2016. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosensors and Bioelectronics 78:530−537

doi: 10.1016/j.bios.2015.11.099
[131]

Low JSY, Teh HF, Thevarajah TM, Chang SW, Khor SM. 2025. An AI-assisted microfluidic paper-based multiplexed surface-enhanced Raman scattering (SERS) biosensor with electrophoretic removal and electrical modulation for accurate acute myocardial infarction (AMI) diagnosis and prognosis. Biosensors and Bioelectronics 270:116949

doi: 10.1016/j.bios.2024.116949
[132]

Chen H, Park SK, Joung Y, Kang T, Lee MK, et al. 2022. SERS-based dual-mode DNA aptasensors for rapid classification of SARS-CoV-2 and influenza A/H1N1 infection. Sensors and Actuators B: Chemical 355:131324

doi: 10.1016/j.snb.2021.131324
[133]

Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, et al. 2012. Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection. Applied Physics Letters 100:203104

doi: 10.1063/1.3701731
[134]

Catala C, Mir-Simon B, Feng X, Cardozo C, Pazos-Perez N, et al. 2016. Online SERS quantification of Staphylococcus aureus and the application to diagnostics in human fluids. Advanced Materials Technologies 1:1600163

doi: 10.1002/admt.201600163
[135]

Kukushkin V, Ambartsumyan O, Subekin A, Astrakhantseva A, Gushchin V, et al. 2023. Multiplex lithographic SERS aptasensor for detection of several respiratory viruses in one pot. International Journal of Molecular Sciences 24:8081

doi: 10.3390/ijms24098081
[136]

Ambartsumyan O, Gribanyov D, Kukushkin V, Kopylov A, Zavyalova E. 2020. SERS-based biosensors for virus determination with oligonucleotides as recognition elements. International Journal of Molecular Sciences 21:3373

doi: 10.3390/ijms21093373
[137]

Wang L, Canoura J, Byrd C, Nguyen T, Alkhamis O, et al. 2024. Examining the relationship between aptamer complexity and molecular discrimination of a low-epitope target. ACS Central Science 10:2213−2228

doi: 10.1021/acscentsci.4c01377
[138]

Li Y, Zhao H, Han G, Li Z, Mugo SM, et al. 2024. Portable saliva sensor based on dual recognition elements for detection of caries pathogenic bacteria. Analytical Chemistry 96:9780−9789

doi: 10.1021/acs.analchem.3c05112
[139]

Eladl O. 2025. Circularization enhances RNA aptamer binding and Stability: evidence from in-cell NMR. Methods 242:72−79

doi: 10.1016/j.ymeth.2025.07.006
[140]

Cheng X, Yao P, Jin C, Long J, Yan X, et al. 2025. Systematic functional screening of switchable aptamer beacon probes. Nature Biomedical Engineering 00:1−16

doi: 10.1038/s41551-025-01503-8
[141]

Albright S, Boette J, Cacace M, Deiters A. 2025. Covalent aptamers: agents with promising therapeutic and diagnostic potential. RSC Chemical Biology 00:1−22

doi: 10.1039/D5CB00133A
[142]

Chi H, Xiao Y, Ning H, Zhang X, Chen H, et al. 2025. Thiol-ene click reaction aptamer sensor based on MWCNT-COOH/MOF-818 composite for highly sensitive detection of foodborne pathogenic bacteria. Current Research in Food Science 11:101193

doi: 10.1016/j.crfs.2025.101193
[143]

Pan YC, Chen YT, Pang HH, Prayadrat C, Huang SC, et al. 2025. RNA aptamer-packaged virus-like particles for label-free, rapid, and on-site fluorescence detection of malachite green in aquatic products. Biosensors & Bioelectronics 288:117796

doi: 10.1016/j.bios.2025.117796