[1]

Sanderson H, Fricker C, Brown RS, Majury A, Liss SN. 2016. Antibiotic resistance genes as an emerging environmental contaminant. Environmental Reviews 24:205−218

doi: 10.1139/er-2015-0069
[2]

Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine 10:S122−S129

doi: 10.1038/nm1145
[3]

Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, et al. 2024. Genomic surveillance for antimicrobial resistance—a One Health perspective. Nature Reviews Genetics 25:142−157

doi: 10.1038/s41576-023-00649-y
[4]

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, et al. 2021. Climate change 2021: the physical science basis. Intergovernmental Panel On Climate Change 2:2391

doi: 10.1017/9781009157896
[5]

Caruso G, Rizzo C. 2025. Cryosphere microbial communities as a reservoir of hidden risks to human and ecosystem's health. Microbiological Research 299:128261

doi: 10.1016/j.micres.2025.128261
[6]

Lennon JT, Frost SDW, Nguyen NK, Peralta AL, Place AR, et al. 2023. Microbiology and climate change: a transdisciplinary imperative. mBio 14:e03335-22

doi: 10.1128/mbio.03335-22
[7]

Wu Z, Mao G, Gou Y, Ji M, Ma Q, et al. 2025. Profiles and risk assessment of antibiotic resistome between Qinghai-Xizang Plateau and polar regions. Geography and Sustainability 6:100342

doi: 10.1016/j.geosus.2025.100342
[8]

Thajudeen J, Venkatachalam S, Vipindas PV. 2025. Antibiotic resistome in the glacier forelands of polar regions. Applied and Environmental Microbiology 91:e00762-25

doi: 10.1128/aem.00762-25
[9]

Liu K, Liu Y, Hu A, Wang F, Zhang Z, et al. 2021. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums. Environmental Microbiology 23:6450−6462

doi: 10.1111/1462-2920.15788
[10]

Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, et al. 2020. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? Science of The Total Environment 735:139275

doi: 10.1016/j.scitotenv.2020.139275
[11]

Scott LC, Lee N, Aw TG. 2020. Antibiotic resistance in minimally human-impacted environments. International Journal of Environmental Research and Public Health 17:3939

doi: 10.3390/ijerph17113939
[12]

Yao T, Thompson L, Yang W, Yu W, Gao Y, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2:663−667

doi: 10.1038/nclimate1580
[13]

Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, et al. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3:168

doi: 10.1038/s43247-022-00498-3
[14]

Xie X, Chen B, Zhu S, Yang R, Yuan K, et al. 2024. Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Journal of Hazardous Materials 469:133943

doi: 10.1016/j.jhazmat.2024.133943
[15]

Liu S, Wang P, Wang X, Chen J. 2021. Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river: metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau. Environmental Pollution 286:117101

doi: 10.1016/j.envpol.2021.117101
[16]

Ren Z, Gao H. 2024. Antibiotic resistance genes in integrated surface ice, cryoconite, and glacier-fed stream in a mountain glacier in Central Asia. Environment International 184:108482

doi: 10.1016/j.envint.2024.108482
[17]

D'Costa VM, King CE, Kalan L, Morar M, Sung WW, et al. 2011. Antibiotic resistance is ancient. Nature 477:457−461

doi: 10.1038/nature10388
[18]

Baquero F, Martinez JL, Lanza VF, Rodríguez-Beltrán J, Galán JC, et al. 2021. Evolutionary pathways and trajectories in antibiotic resistance. Clinical Microbiology Reviews 34:e00050-19

doi: 10.1128/CMR.00050-19
[19]

Marcoleta AE, Varas MA, Costa J, Rojas-Salgado J, Arros P, et al. 2021. Mapping the microbial diversity and natural resistome of North Antarctica soils. Microbiology 2005:442734

doi: 10.1101/2021.05.05.442734
[20]

Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, et al. 2018. A reservoir of 'historical'antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40

doi: 10.1186/s40168-018-0424-5
[21]

Mao G, Ji M, Jiao N, Su J, Zhang Z, et al. 2023. Monsoon affects the distribution of antibiotic resistome in Tibetan glaciers. Environmental Pollution 317:120809

doi: 10.1016/j.envpol.2022.120809
[22]

Liao X, Hou L, Zhang L, Grossart HP, Liu K, et al. 2024. Distinct influences of altitude on microbiome and antibiotic resistome assembly in a glacial river ecosystem of Mount Everest. Journal of Hazardous Materials 479:135675

doi: 10.1016/j.jhazmat.2024.135675
[23]

Zhao R, Yu K, Zhang J, Zhang G, Huang J, et al. 2020. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Research 186:116318

doi: 10.1016/j.watres.2020.116318
[24]

Chen H, Liu C, Teng Y, Zhang Z, Chen Y, et al. 2021. Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments. Environment International 147:106345

doi: 10.1016/j.envint.2020.106345
[25]

Kim H, Kim M, Kim S, Lee YM, Shin SC. 2022. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. Environmental Pollution 294:118634

doi: 10.1016/j.envpol.2021.118634
[26]

Edwards A. 2015. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Frontiers in Earth Science 3:12

doi: 10.3389/feart.2015.00012
[27]

Vishnupriya S, Jabir T, Akhil Prakash E, Mohamed Hatha AA. 2024. Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Brazilian Journal of Microbiology 55(3):2371−2383

doi: 10.1007/s42770-024-01368-0
[28]

Zhu Y, Liu S, Wei J, Wu K, Bolch T, et al. 2025. Glacier-level and gridded mass change in river sources in the eastern Tibetan Plateau region (ETPR) from the 1970s to 2000. Earth System Science Data 17:1851−1871

doi: 10.5194/essd-17-1851-2025
[29]

Keen PL, Patrick DM. 2013. Tracking change: a look at the ecological footprint of antibiotics and antimicrobial resistance. Antibiotics 2:191−205

doi: 10.3390/antibiotics2020191
[30]

Li LG, Huang Q, Yin X, Zhang T. 2020. Source tracking of antibiotic resistance genes in the environment—challenges, progress, and prospects. Water Research 185:116127

doi: 10.1016/j.watres.2020.116127
[31]

Sherpa MT, Najar IN, Das S, Thakur N. 2020. Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Ecotoxicology and Environmental Safety 203:111037

doi: 10.1016/j.ecoenv.2020.111037
[32]

Makowska N, Zawierucha K, Nadobna P, Piątek-Bajan K, Krajewska A, et al. 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Science of The Total Environment 716:137022

doi: 10.1016/j.scitotenv.2020.137022
[33]

Chen B, Yuan K, Chen X, Yang Y, Zhang T, et al. 2016. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environmental Science & Technology 50:6670−6679

doi: 10.1021/acs.est.6b00619
[34]

Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, et al. 2015. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One 10:e0069533

doi: 10.1371/journal.pone.0069533
[35]

Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, et al. 2020. Resurrection of inactive microbes and resistome present in the natural frozen world: reality or myth? Science of The Total Environment 737:40107

doi: 10.1016/j.scitotenv.2020.140107
[36]

Yuan K, Yu K, Yang R, Zhang Q, Yang Y, et al. 2019. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicology and Environmental Safety 176:300−308

doi: 10.1016/j.ecoenv.2019.03.099
[37]

Diaz KS, Rich VI, Mclain JE. 2017. Searching for antibiotic resistance genes in a pristine arctic wetland. Journal of Contemporary Water Research & Education 160:42−59

doi: 10.1111/j.1936-704X.2017.03239.x
[38]

Zhang S, Yang G, Hou S, Zhang T, Li Z, et al. 2018. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. Environmental Pollution 234:339−346

doi: 10.1016/j.envpol.2017.11.031
[39]

Shen JP, Li ZM, Hu HW, Zeng J, Zhang LM, et al. 2019. Distribution and succession feature of antibiotic resistance genes along a soil development chronosequence in Urumqi No. 1 glacier of China. Frontiers in Microbiology 10:1569

doi: 10.3389/fmicb.2019.01569
[40]

Kashuba E, Dmitriev AA, Kamal SM, Melefors O, Griva G, et al. 2017. Ancient permafrost staphylococci carry antibiotic resistance genes. Microbial Ecology in Health and Disease 28:1345574

doi: 10.1080/16512235.2017.1345574
[41]

Wei STS, Higgins CM, Adriaenssens EM, Cowan DA, Pointing SB. 2015. Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica. Polar Biology 38:919−925

doi: 10.1007/s00300-015-1649-4
[42]

McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, et al. 2019. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International 125:497−504

doi: 10.1016/j.envint.2019.01.034
[43]

Tan L, Li L, Ashbolt N, Wang X, Cui Y, et al. 2018. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Science of the Total Environment 621:1176−1184

doi: 10.1016/j.scitotenv.2017.10.110
[44]

Wang F, Stedtfeld RD, Kim OS, Chai B, Yang L, et al. 2016. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils. Environmental Science & Technology 50:12621−12629

doi: 10.1021/acs.est.6b02863
[45]

Miller RV, Gammon K, Day MJ. 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology 55:37−45

doi: 10.1139/w08-119
[46]

Krumperman PH. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology 46:165−170

doi: 10.1128/aem.46.1.165-170.1983
[47]

Hernández J, González-Acuña D. 2016. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infection Ecology & Epidemiology 6:32112

doi: 10.3402/iee.v6.32112
[48]

Rousham EK, Unicomb L, Islam MA. 2018. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Proceedings of the Royal Society B: Biological Sciences 285:20180332

doi: 10.1098/rspb.2018.0332
[49]

Wu D, Van Goethem MW, Graham DW, Zhang X, Li Z, et al. 2025. Antarctic environmental resistomes closely associated with human and animal waste releases. Environmental Science & Technology 59:22832−22841

doi: 10.1021/acs.est.5c06023
[50]

Jara D, Bello-Toledo H, Domínguez M, Cigarroa C, Fernández P, et al. 2020. Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Scientific Reports 10:3145

doi: 10.1038/s41598-020-60035-0
[51]

Pinilla G, Muñoz L, Gallego EA, Chavarro B, Fandiño J. 2006. Pre Presencia de Integrones Clase 1 en Aislamientos de Staphylococcus epidermidis de las unidades de neonatología del Instituto Materno Infantil de Bogotá. Nova 4:55−59

doi: 10.22490/24629448.361
[52]

Karkman A, Pärnänen K, Joakim Larsson DG. 2019. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications 10:80

doi: 10.1038/s41467-018-07992-3
[53]

Dancer SJ, Shears P, Platt DJ. 1997. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic. Journal of Applied Microbiology 82:597−609

doi: 10.1111/j.1365-2672.1997.tb03590.x
[54]

Mogrovejo DC, Perini L, Gostinčar C, Sepčić K, Turk M, et al. 2020. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable arctic bacteria. Frontiers in Microbiology 11:570

doi: 10.3389/fmicb.2020.00570
[55]

Bonnedahl J, Hernandez J, Stedt J, Waldenström J, Olsen B, et al. 2014. Extended-Spectrum β-Lactamases in Escherichia coli and Klebsiella pneumoniae in Gulls, Alaska, USA. Emerging Infectious Diseases 20:897−899

doi: 10.3201/eid2005.130325
[56]

Mir RA, Weppelmann TA, Johnson JA, Archer D, Morris JG, et al. 2016. Identification and characterization of cefotaxime resistant bacteria in beef cattle. PLoS One 11:e0163279

doi: 10.1371/journal.pone.0163279
[57]

Yang Y, Li B, Zou S, Fang HHP, Zhang T. 2014. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research 62:97−106

doi: 10.1016/j.watres.2014.05.019
[58]

Yang Y, Liu G, Ye C, Liu W. 2019. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. Journal of Hazardous Materials 361:283−293

doi: 10.1016/j.jhazmat.2018.09.002
[59]

Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 13:42−51

doi: 10.1038/nrmicro3380
[60]

Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, et al. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports 5:127−134

doi: 10.1111/1758-2229.12011
[61]

Petrova M, Kurakov A, Shcherbatova N, Mindlin S. 2014. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Journal of General Microbiology 160:2253−2263

doi: 10.1099/mic.0.079335-0
[62]

Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16:472−482

doi: 10.1038/nrg3962
[63]

Zhang B, Yang R, Liu Y, Guo J, Yang J, et al. 2025. From glacier forelands to human settlements: patterns, environmental drivers, and risks of antibiotic resistance genes. Journal of Hazardous Materials 494:138455

doi: 10.1016/j.jhazmat.2025.138455
[64]

Li N, Lin Z, Wang H, Niu F, Fan X, et al. 2024. Inventory of active rock glaciers and their distribution characteristics on the Qinghai-Tibet Plateau and its adjacent mountainous regions. Geomorphology 467:109468

doi: 10.1016/j.geomorph.2024.109468
[65]

Makowska-Zawierucha N, Trzebny A, Zawierucha K, Manthapuri V, Bradley JA, et al. 2024. Arctic plasmidome analysis reveals distinct relationships among associated antimicrobial resistance genes and virulence genes along anthropogenic gradients. Global Change Biology 30:e17293

doi: 10.1111/gcb.17293
[66]

Bell TH, Callender KL, Whyte LG, Greer CW. 2013. Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology 2:533−554

doi: 10.3390/biology2020533
[67]

Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, et al. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355:826−830

doi: 10.1126/science.aaj2191
[68]

Okubo T, Ae R, Noda J, Iizuka Y, Usui M, et al. 2019. Detection of the Sul2–strA–strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. Journal of Global Antimicrobial Resistance 17:72−78

doi: 10.1016/j.jgar.2018.11.005
[69]

Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, et al. 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases 14:742−750

doi: 10.1016/S1473-3099(14)70780-7
[70]

Hwengwere K, Paramel Nair H, Hughes KA, Peck LS, Clark MS, et al. 2022. Antimicrobial resistance in Antarctica: is it still a pristine environment? Microbiome 10:71

doi: 10.1186/s40168-022-01250-x
[71]

Bisaccia M, Berini F, Marinelli F, Binda E. 2025. Emerging trends in antimicrobial resistance in polar aquatic ecosystems. Antibiotics 14:394

doi: 10.3390/antibiotics14040394
[72]

Liu S, Wang P, Wang C, Wang X, Chen J. 2021. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Research 202:117447

doi: 10.1016/j.watres.2021.117447
[73]

Rafiq M, Hayat M, Zada S, Sajjad W, Hassan N, et al. 2019. Geochemistry and bacterial recovery from Hindu Kush range glacier and their potential for metal resistance and antibiotic production. Geomicrobiology Journal 36:326−338

doi: 10.1080/01490451.2018.1551947
[74]

Kallenborn R, Brorström-Lundén E, Reiersen LO, Wilson S. 2018. Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change. Environmental Science and Pollution Research 25:33001−33013

doi: 10.1007/s11356-017-9726-6
[75]

Ben Y, Fu C, Hu M, Liu L, Wong MH, et al. 2019. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environmental Research 169:483−493

doi: 10.1016/j.envres.2018.11.040
[76]

Pan Y, Zeng J, Li L, Yang J, Tang Z, et al. 2020. Coexistence of antibiotic resistance genes and virulence factors deciphered by large-scale complete genome analysis. mSystems 5:e00821-19

doi: 10.1128/mSystems.00821-19
[77]

Sajjad W, Ilahi N, Haq A, Shang Z, Nabi G, et al. 2024. Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. Environmental Research 247:118288

doi: 10.1016/j.envres.2024.118288
[78]

Pei R, Kim SC, Carlson KH, Pruden A. 2006. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research 40:2427−2435

doi: 10.1016/j.watres.2006.04.017
[79]

Li B, Yang Y, Ma L, Ju F, Guo F, et al. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal 9:2490−2502

doi: 10.1038/ismej.2015.59
[80]

Fitzpatrick D, Walsh F. 2016. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiology Ecology 92:fiv168

doi: 10.1093/femsec/fiv168
[81]

Haley E, Cockerill FR, Pesano RL, Festa RA, Luke N, et al. 2024. Pooled antibiotic susceptibility testing performs within CLSI standards for validation when measured against broth microdilution and disk diffusion antibiotic susceptibility testing of cultured isolates. Antibiotics 13:1214

doi: 10.3390/antibiotics13121214
[82]

Van Holm W, Ghesquière J, Boon N, Verspecht T, Bernaerts K, et al. 2021. A viability quantitative pcr dilemma: are longer amplicons better? Applied and Environmental Microbiology 87:e02653-20

doi: 10.1128/AEM.02653-20
[83]

Fan L, Chen C, Zhang H, Zeng Y, Li T, et al. 2025. Atmospheric detection, prevalence, transmission, health and ecological consequences of antibiotic resistance genes and resistant bacteria: a comprehensive review. Emerging Contaminants 11:100514

doi: 10.1016/j.emcon.2025.100514
[84]

Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology 35:833–844

doi: 10.1038/nbt.3935
[85]

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research 48:D517−D525

doi: 10.1093/nar/gkz935
[86]

Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, et al. 2022. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nature Biotechnology 40:711−719

doi: 10.1038/s41587-021-01130-z
[87]

Straneo F, Sutherland DA, Stearns L, Catania G, Heimbach P, et al. 2019. The case for a sustained greenland ice sheet-ocean observing system (GrIOOS). Frontiers in Marine Science 6:138

doi: 10.3389/fmars.2019.00138
[88]

Cauvy-Fraunié S, Andino P, Espinosa R, Calvez R, Jacobsen D, et al. 2016. Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications 7:12025

doi: 10.1038/ncomms12025
[89]

Knapp CW, Lima L, Olivares-Rieumont S, Bowen E, Werner D, et al. 2012. Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba. Frontiers in Microbiology 3:396

doi: 10.3389/fmicb.2012.00396
[90]

McConnell MM, Hansen LT, Neudorf KD, Hayward JL, Jamieson RC, et al. 2018. Sources of antibiotic resistance genes in a rural river system. Journal of Environmental Quality 47:997−1005

doi: 10.2134/jeq2017.12.0477
[91]

Liang J, Mao G, Yin X, Ma L, Liu L, et al. 2020. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Water Research 168:115160

doi: 10.1016/j.watres.2019.115160
[92]

Hu A, Wang H, Li J, Mulla SI, Qiu Q, et al. 2020. Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China. Journal of Hazardous Materials 398:122820

doi: 10.1016/j.jhazmat.2020.122820
[93]

Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, et al. 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology 2:16270

doi: 10.1038/nmicrobiol.2016.270
[94]

Zhu D, Ding J, Wang YF, Zhu YG. 2022. Effects of trophic level and land use on the variation of animal antibiotic resistome in the soil food web. Environmental Science & Technology 56:14937−14947

doi: 10.1021/acs.est.2c00710
[95]

Gao FZ, He LY, Liu YS, Zhao JL, Zhang T, et al. 2024. Integrating global microbiome data into antibiotic resistance assessment in large rivers. Water Research 250:121030

doi: 10.1016/j.watres.2023.121030