| [1] |
da Costa CAR, Pinheiro FS, da Silva LGM, da Silva FMO, Toro MJU. 2024. Evaluation of physicochemical properties. bioactive compounds, and antioxidant activity in traditional and decaffeinated coffee blends from the Cerrado Mineiro Region in Brazil. |
| [2] |
Noleto AR, Guimarães APN, Mendonça MC, Gonçalves MAB, Silveira MFA, et al. 2022. Knowledge of the population about native fruits from the Brazilian Cerrado. |
| [3] |
Bicas JL, Molina G, Dionísio AP, Barros FFC, Wagner R, et al. 2011. Volatile constituents of exotic fruits from Brazil. |
| [4] |
García YM, de Lemos EEP, Augusti R, Melo JOF. 2021. Optimization of extraction and identification of volatile compounds from Myrciaria floribunda. |
| [5] |
da Graca Tomas M, Rodrigues LJ, de Almeida Lobo F, Takeuchi KP, de Paula NRF, et al. 2023. Physicochemical characteristics and volatile profile of pitaya baby (Selenicereus setaceus). |
| [6] |
Aragüez I, Fernández VV. 2013. Metabolic engineering of aroma components in fruits. |
| [7] |
Goff SA, Klee HJ. 2006. Plant volatile compounds: sensory cues for health and nutritional value? |
| [8] |
Aharoni A, Jongsma MA, Bouwmeester HJ. 2005. Volatile science? Metabolic engineering of terpenoids in plants. |
| [9] |
Balasubramanian S, Panigrahi S. 2011. Solid-phase microextraction (SPME) techniques for quality characterization of food products: a review. |
| [10] |
Silva JS, Damiani C, da Cunha MC, Carvalho EEN, de Barros Vilas Boas EV. 2019. Volatile profiling of pitanga fruit (Eugenia uniflora L.) at different ripening stages using solid-phase microextraction and mass spectrometry coupled with gas chromatography. |
| [11] |
de Miranda Monteiro G, Carvalho EEN, do Lago RC, da Silva LGM, de Souza LR, et al. 2025. Compositional analysis of Baru (Dipteryx alata Vogel) pulp highlighting its industrial potential. |
| [12] |
da Costa CAR, do Nascimento SV, da Silva Valadares RB, da Silva LGM, Machado GGL, et al. 2025. Proteome and metabolome of Annona crassiflora Mart. fruit and their interaction during development. |
| [13] |
Adams RP. 2007. Identification of essential oil components by gas chromatography/ mass spectrometry. 4th Edition. Allured Publishing Corporation, Carol Stream, IL |
| [14] |
Ferreira DF. 2019. SISVAR: a computer analysis system to fixed effects split plot type designs. |
| [15] |
Augusto F, Valente ALP, dos Santos Tada E, Rivellino SR. 2000. Screening of Brazilian fruit aromas using solid-phase microextraction–gas chromatography–mass spectrometry. |
| [16] |
Aguiar MCS, Silvério FO, de Pinho GP, Lopes PSN, Fidêncio PH, et al. 2014. Volatile compounds from fruits of Butia capitata at different stages of maturity and storage. |
| [17] |
Schmidt SFP, Schultz EE, Ludwig V, Berghetti MRP, Thewes FR, et al. 2020. Volatile compounds and overall quality of 'Braeburn' apples after long-term storage: interaction of innovative storage technologies and 1-MCP treatment. |
| [18] |
Jordán MJ, Goodner KL, Shaw PE. 2002. Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC−MS and GC/O. |
| [19] |
Xu Y, Fan W, Qian MC. 2007. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. |
| [20] |
Rondan-Sanabria GG, Garcia AJC, Montaño HSP, Arias ECS, Narain N. 2019. Compostos voláteis da acerola (Malpighia emarginata) obtidos por HS-SPME em dois estágios de maturação. |
| [21] |
Tietel Z, Plotto A, Fallik E, Lewinsohn E, Porat R. 2011. Taste and aroma of fresh and stored mandarins. |
| [22] |
Yan X, Wang Q, Guo C, Wang Y, Guo Y, et al. 2018. The synthesis of fruity esters in plants: biosynthesis pathways and the regulation of alcohol acyltransferase (AAT). |
| [23] |
Rambla JL, González-Mas MC, Pons C, Bernet GP, Asins MJ, et al. 2014. Fruit volatile profiles of two citrus hybrids are dramatically different from those of their parents. |
| [24] |
Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: functions. compositions, biosynthesis, and regulation. |
| [25] |
de Vasconcelos Facundo HV, dos Santos Garruti D, dos Santos Dias CT, Cordenunsi BR, Lajolo FM. 2012. Influence of different banana cultivars on volatile compounds during ripening in cold storage. |
| [26] |
Weldegergis BT, de Villiers A, McNeish C, Seethapathy S, Mostafa A, et al. 2011. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS). |
| [27] |
Gou M, Bi J, Chen Q, Wu X, Fauconnier ML, et al. 2023. Advances and perspectives in fruits and vegetables flavor based on molecular sensory science. |
| [28] |
Ninkuu V, Jaiswal SK, Dubey A, Ray A, Mishra A. 2021. Phytochemicals from forest trees: chemical diversity and potential in drug discovery. |
| [29] |
Pudełek M, Catapano J, Kochanowski P, Mrowiec K, Janik-Olchawa N, et al. 2019. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. |
| [30] |
Feriotto G, Marchetti N, Costa V, Beninati S, Tagliati F, et al. 2018. Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and their effects on the HIV-1 Tat protein function. |
| [31] |
Swift KAD. 1997. Flavours and fragrances. UK: Woodhead Publishing doi: 10.1533/9781845698249 |
| [32] |
Tamura H, Boonbumrung S, Yoshizawa T, Varanyanond W. 2001. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). |
| [33] |
d'Acampora Zellner B, Dugo P, Dugo G, Mondello L. 2008. Gas chromatography–olfactometry in food flavour analysis. |
| [34] |
Pontes M, Marques JC, Câmara JS. 2009. Headspace solid-phase microextraction–gas chromatography–quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species. |
| [35] |
Pereira J, Pereira J, Câmara JS. 2011. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile—Identification of novel compounds. |
| [36] |
Carasek E, Pawliszyn J. 2006. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. |
| [37] |
Parreira FV, de Lourdes Cardeal Z. 2005. Amostragem de compostos orgânicos voláteis no ar utilizando a técnica de microextração em fase sólida. |
| [38] |
Pawliszyn J, Pawliszyn B, Pawliszyn M. 1997. Solid phase microextraction (SPME). |
| [39] |
Roberts DD, Pollien P, Milo C. 2000. Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. |
| [40] |
Santos CC, da S Bernardes R, Goelzer A, de P Q Scalon S, do C Vieira M. 2020. Chicken manure and luminous availability influence gas exchange and photochemical processes in Alibertia edulis (Rich.) A. Rich seedlings. |
| [41] |
Kataoka H, Lord HL, Pawliszyn J. 2000. Applications of solid-phase microextraction in food analysis. |
| [42] |
Polo M, Garcia-Jares C, Llompart M, Cela R. 2007. Optimization of a sensitive method for the determination of nitro musk fragrances in waters by solid-phase microextraction and gas chromatography with micro electron capture detection using factorial experimental design. |
| [43] |
Chitarra MIF, Chitarra AB. 2005. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. 2ª ed. Lavras: UFLA. 785 pp |
| [44] |
Narain N, das Neves Almeida J, de Souza Galvão M, Madruga MS, de Brito ES. 2004. Compostos voláteis dos frutos de maracujá (Passiflora edulis forma Flavicarpa) e de cajá (Spondias mombin L.) obtidos pela técnica de headspace dinâmico. |
| [45] |
Hou J, Liang L, Wang Y. 2020. Volatile composition changes in navel orange at different growth stages by HS-SPME–GC–MS. |
| [46] |
Soares FD, Pereira T, Maio Marques MO, Monteiro AR. 2007. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. |
| [47] |
Engel KH, Ramming DW, Flath RA, Teranishi R. 1988. Investigation of volatile constituents in nectarines. 2. Changes in aroma composition during nectarine maturation. |
| [48] |
Wang Y, Yang C, Li S, Yang L, Wang Y, et al. 2009. Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. |
| [49] |
Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, et al. 2004. Functional characterization of enzymes forming volatile esters from strawberry and banana. |
| [50] |
Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids, eds Schrader J, Bohlmann J. Cham: Springer. Volume 148. pp. 63–106 doi: 10.1007/10_2014_295 |
| [51] |
Dewick PM. 2009. Secondary metabolism: the building blocks and construction mechanisms. In Medicinal Natural Products, 3rd edition. US: Wiley. pp. 7–38 doi: 10.1002/9780470742761.ch2 |
| [52] |
Felipe LO, Bicas JL. 2017. Terpenos, aromas e a química dos compostos naturais. |
| [53] |
Rocha S, Coutinho P, Barros A, Coimbra MA, Delgadillo I, et al. 2000. Aroma potential of two Bairrada white grape varieties: maria gomes and bical. |
| [54] |
Yang C, Wang Y, Wu B, Fang J, Li S. 2011. Volatile compounds evolution of three table grapes with different flavour during and after maturation. |
| [55] |
Gao J, Wu BP, Gao LX, Liu HR, Zhang B, et al. 2018. Glycosidically bound volatiles as affected by ripening stages of Satsuma mandarin fruit. |
| [56] |
Schrader J. 2005. Microbial flavour production. In Flavours and Fragrances, ed. Berger RG. Berlin, Heidelberg: Springer. pp. 507–74 doi: 10.1007/978-3-540-49339-6_23 |
| [57] |
Arn H, Acree TE. 1998. Flavornet: a database of aroma compounds based on odor potency in natural products. |
| [58] |
The Good Scents Company. 2019. The Good Scents Company information system. (Accessed February 2024). Retrieved from www.thegoodscentscompany.com |