[1]

da Costa CAR, Pinheiro FS, da Silva LGM, da Silva FMO, Toro MJU. 2024. Evaluation of physicochemical properties. bioactive compounds, and antioxidant activity in traditional and decaffeinated coffee blends from the Cerrado Mineiro Region in Brazil. Food and Humanity 3:100388

doi: 10.1016/j.foohum.2024.100388
[2]

Noleto AR, Guimarães APN, Mendonça MC, Gonçalves MAB, Silveira MFA, et al. 2022. Knowledge of the population about native fruits from the Brazilian Cerrado. Research, Society and Development 11(14):e520111436585

doi: 10.33448/rsd-v11i14.36585
[3]

Bicas JL, Molina G, Dionísio AP, Barros FFC, Wagner R, et al. 2011. Volatile constituents of exotic fruits from Brazil. Food Research International 44(7):1843−55

doi: 10.1016/j.foodres.2011.01.012
[4]

García YM, de Lemos EEP, Augusti R, Melo JOF. 2021. Optimization of extraction and identification of volatile compounds from Myrciaria floribunda. Revista Ciência Agronômica 52(3):e20207199

doi: 10.5935/1806-6690.20210031
[5]

da Graca Tomas M, Rodrigues LJ, de Almeida Lobo F, Takeuchi KP, de Paula NRF, et al. 2023. Physicochemical characteristics and volatile profile of pitaya baby (Selenicereus setaceus). South African Journal of Botany 154:88−97

doi: 10.1016/j.sajb.2023.01.020
[6]

Aragüez I, Fernández VV. 2013. Metabolic engineering of aroma components in fruits. Biotechnology Journal 8(10):1144−58

doi: 10.1002/biot.201300113
[7]

Goff SA, Klee HJ. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science 311(5762):815−19

doi: 10.1126/science.1112614
[8]

Aharoni A, Jongsma MA, Bouwmeester HJ. 2005. Volatile science? Metabolic engineering of terpenoids in plants. Trends in Plant Science 10(12):594−602

doi: 10.1016/j.tplants.2005.10.005
[9]

Balasubramanian S, Panigrahi S. 2011. Solid-phase microextraction (SPME) techniques for quality characterization of food products: a review. Food and Bioprocess Technology 4(1):1−26

doi: 10.1007/s11947-009-0299-3
[10]

Silva JS, Damiani C, da Cunha MC, Carvalho EEN, de Barros Vilas Boas EV. 2019. Volatile profiling of pitanga fruit (Eugenia uniflora L.) at different ripening stages using solid-phase microextraction and mass spectrometry coupled with gas chromatography. Scientia Horticulturae 250:366−70

doi: 10.1016/j.scienta.2019.02.076
[11]

de Miranda Monteiro G, Carvalho EEN, do Lago RC, da Silva LGM, de Souza LR, et al. 2025. Compositional analysis of Baru (Dipteryx alata Vogel) pulp highlighting its industrial potential. Food Research International 201:115548

doi: 10.1016/j.foodres.2024.115548
[12]

da Costa CAR, do Nascimento SV, da Silva Valadares RB, da Silva LGM, Machado GGL, et al. 2025. Proteome and metabolome of Annona crassiflora Mart. fruit and their interaction during development. Scientia Horticulturae 339:113809

doi: 10.1016/J.SCIENTA.2024.113809
[13]

Adams RP. 2007. Identification of essential oil components by gas chromatography/ mass spectrometry. 4th Edition. Allured Publishing Corporation, Carol Stream, IL

[14]

Ferreira DF. 2019. SISVAR: a computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics 37(4):529−35

doi: 10.28951/rbb.v37i4.450
[15]

Augusto F, Valente ALP, dos Santos Tada E, Rivellino SR. 2000. Screening of Brazilian fruit aromas using solid-phase microextraction–gas chromatography–mass spectrometry. Journal of Chromatography A 873(1):117−27

doi: 10.1016/S0021-9673(99)01282-0
[16]

Aguiar MCS, Silvério FO, de Pinho GP, Lopes PSN, Fidêncio PH, et al. 2014. Volatile compounds from fruits of Butia capitata at different stages of maturity and storage. Food Research International 62:1095−99

doi: 10.1016/j.foodres.2014.05.039
[17]

Schmidt SFP, Schultz EE, Ludwig V, Berghetti MRP, Thewes FR, et al. 2020. Volatile compounds and overall quality of 'Braeburn' apples after long-term storage: interaction of innovative storage technologies and 1-MCP treatment. Scientia Horticulturae 262:109039

doi: 10.1016/j.scienta.2019.109039
[18]

Jordán MJ, Goodner KL, Shaw PE. 2002. Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC−MS and GC/O. Journal of Agricultural and Food Chemistry 50(6):1523−28

doi: 10.1021/jf011077p
[19]

Xu Y, Fan W, Qian MC. 2007. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. Journal of Agricultural and Food Chemistry 55(8):3051−57

doi: 10.1021/jf0631732
[20]

Rondan-Sanabria GG, Garcia AJC, Montaño HSP, Arias ECS, Narain N. 2019. Compostos voláteis da acerola (Malpighia emarginata) obtidos por HS-SPME em dois estágios de maturação. Revista de Ciências Agrárias 42(1):261−70

doi: 10.19084/RCA18065
[21]

Tietel Z, Plotto A, Fallik E, Lewinsohn E, Porat R. 2011. Taste and aroma of fresh and stored mandarins. Journal of the Science of Food and Agriculture 91(1):14−23

doi: 10.1002/jsfa.4146
[22]

Yan X, Wang Q, Guo C, Wang Y, Guo Y, et al. 2018. The synthesis of fruity esters in plants: biosynthesis pathways and the regulation of alcohol acyltransferase (AAT). Journal of Plant Physiology 231:34−39

doi: 10.1016/j.jplph.2018.09.006
[23]

Rambla JL, González-Mas MC, Pons C, Bernet GP, Asins MJ, et al. 2014. Fruit volatile profiles of two citrus hybrids are dramatically different from those of their parents. Journal of Agricultural and Food Chemistry 62(46):11312−22

doi: 10.1021/jf5043079
[24]

Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: functions. compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157

doi: 10.3389/fpls.2022.860157
[25]

de Vasconcelos Facundo HV, dos Santos Garruti D, dos Santos Dias CT, Cordenunsi BR, Lajolo FM. 2012. Influence of different banana cultivars on volatile compounds during ripening in cold storage. Food Research International 49(2):626−33

doi: 10.1016/j.foodres.2012.08.013
[26]

Weldegergis BT, de Villiers A, McNeish C, Seethapathy S, Mostafa A, et al. 2011. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS). Food Chemistry 129(1):188−99

doi: 10.1016/j.foodchem.2010.11.157
[27]

Gou M, Bi J, Chen Q, Wu X, Fauconnier ML, et al. 2023. Advances and perspectives in fruits and vegetables flavor based on molecular sensory science. Food Reviews International 39(6):3066−79

doi: 10.1080/87559129.2021.2005088
[28]

Ninkuu V, Jaiswal SK, Dubey A, Ray A, Mishra A. 2021. Phytochemicals from forest trees: chemical diversity and potential in drug discovery. Phytochemistry Reviews 20:425−66

doi: 10.1007/s11101-020-09715-2
[29]

Pudełek M, Catapano J, Kochanowski P, Mrowiec K, Janik-Olchawa N, et al. 2019. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 134:172−81

doi: 10.1016/j.fitote.2019.02.020
[30]

Feriotto G, Marchetti N, Costa V, Beninati S, Tagliati F, et al. 2018. Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and their effects on the HIV-1 Tat protein function. Chemistry & Biodiversity 15(2):e1700436

doi: 10.1002/cbdv.201700436
[31]

Swift KAD. 1997. Flavours and fragrances. UK: Woodhead Publishing doi: 10.1533/9781845698249

[32]

Tamura H, Boonbumrung S, Yoshizawa T, Varanyanond W. 2001. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). Food Science and Technology Research 7(1):72−77

doi: 10.3136/fstr.7.72
[33]

d'Acampora Zellner B, Dugo P, Dugo G, Mondello L. 2008. Gas chromatography–olfactometry in food flavour analysis. Journal of Chromatography A 1186(1–2):123−43

doi: 10.1016/j.chroma.2007.09.006
[34]

Pontes M, Marques JC, Câmara JS. 2009. Headspace solid-phase microextraction–gas chromatography–quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species. Microchemical Journal 93(1):1−11

doi: 10.1016/j.microc.2009.03.010
[35]

Pereira J, Pereira J, Câmara JS. 2011. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile—Identification of novel compounds. Talanta 83(3):899−906

doi: 10.1016/j.talanta.2010.10.064
[36]

Carasek E, Pawliszyn J. 2006. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. Journal of Agricultural and Food Chemistry 54(23):8688−96

doi: 10.1021/jf0613942
[37]

Parreira FV, de Lourdes Cardeal Z. 2005. Amostragem de compostos orgânicos voláteis no ar utilizando a técnica de microextração em fase sólida. Química Nova 28(4):646−54

doi: 10.1590/S0100-40422005000400018
[38]

Pawliszyn J, Pawliszyn B, Pawliszyn M. 1997. Solid phase microextraction (SPME). The Chemical Educator 2(4):1−7

doi: 10.1007/s00897970137a
[39]

Roberts DD, Pollien P, Milo C. 2000. Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. Journal of Agricultural and Food Chemistry 48(6):2430−37

doi: 10.1021/jf991116l
[40]

Santos CC, da S Bernardes R, Goelzer A, de P Q Scalon S, do C Vieira M. 2020. Chicken manure and luminous availability influence gas exchange and photochemical processes in Alibertia edulis (Rich.) A. Rich seedlings. Engenharia Agrícola 40(4):420−32

doi: 10.1590/1809-4430-Eng.Agric.v40n4p420-432/2020
[41]

Kataoka H, Lord HL, Pawliszyn J. 2000. Applications of solid-phase microextraction in food analysis. Journal of Chromatography A 880(1−2):35−62

doi: 10.1016/S0021-9673(00)00309-5
[42]

Polo M, Garcia-Jares C, Llompart M, Cela R. 2007. Optimization of a sensitive method for the determination of nitro musk fragrances in waters by solid-phase microextraction and gas chromatography with micro electron capture detection using factorial experimental design. Analytical and Bioanalytical Chemistry 388(8):1789−98

doi: 10.1007/s00216-007-1359-z
[43]

Chitarra MIF, Chitarra AB. 2005. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. 2ª ed. Lavras: UFLA. 785 pp

[44]

Narain N, das Neves Almeida J, de Souza Galvão M, Madruga MS, de Brito ES. 2004. Compostos voláteis dos frutos de maracujá (Passiflora edulis forma Flavicarpa) e de cajá (Spondias mombin L.) obtidos pela técnica de headspace dinâmico. Ciência e Tecnologia de Alimentos 24(2):212−16

doi: 10.1590/S0101-20612004000200009
[45]

Hou J, Liang L, Wang Y. 2020. Volatile composition changes in navel orange at different growth stages by HS-SPME–GC–MS. Food Research International 136:109333

doi: 10.1016/j.foodres.2020.109333
[46]

Soares FD, Pereira T, Maio Marques MO, Monteiro AR. 2007. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chemistry 100(1):15−21

doi: 10.1016/j.foodchem.2005.07.061
[47]

Engel KH, Ramming DW, Flath RA, Teranishi R. 1988. Investigation of volatile constituents in nectarines. 2. Changes in aroma composition during nectarine maturation. Journal of Agricultural and Food Chemistry 36(5):1003−6

doi: 10.1021/jf00083a024
[48]

Wang Y, Yang C, Li S, Yang L, Wang Y, et al. 2009. Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chemistry 116(1):356−64

doi: 10.1016/j.foodchem.2009.02.004
[49]

Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, et al. 2004. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology 135(4):1865−78

doi: 10.1104/pp.104.042580
[50]

Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids, eds Schrader J, Bohlmann J. Cham: Springer. Volume 148. pp. 63–106 doi: 10.1007/10_2014_295

[51]

Dewick PM. 2009. Secondary metabolism: the building blocks and construction mechanisms. In Medicinal Natural Products, 3rd edition. US: Wiley. pp. 7–38 doi: 10.1002/9780470742761.ch2

[52]

Felipe LO, Bicas JL. 2017. Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola 39(2):120−30

doi: 10.21577/0104-8899.20160068
[53]

Rocha S, Coutinho P, Barros A, Coimbra MA, Delgadillo I, et al. 2000. Aroma potential of two Bairrada white grape varieties: maria gomes and bical. Journal of Agricultural and Food Chemistry 48(10):4802−7

doi: 10.1021/jf000175s
[54]

Yang C, Wang Y, Wu B, Fang J, Li S. 2011. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry 128(4):823−30

doi: 10.1016/j.foodchem.2010.11.029
[55]

Gao J, Wu BP, Gao LX, Liu HR, Zhang B, et al. 2018. Glycosidically bound volatiles as affected by ripening stages of Satsuma mandarin fruit. Food Chemistry 240:1097−105

doi: 10.1016/j.foodchem.2017.07.085
[56]

Schrader J. 2005. Microbial flavour production. In Flavours and Fragrances, ed. Berger RG. Berlin, Heidelberg: Springer. pp. 507–74 doi: 10.1007/978-3-540-49339-6_23

[57]

Arn H, Acree TE. 1998. Flavornet: a database of aroma compounds based on odor potency in natural products. Developments in Food Science 40:27

doi: 10.1016/S0167-4501(98)80029-0
[58]

The Good Scents Company. 2019. The Good Scents Company information system. (Accessed February 2024). Retrieved from www.thegoodscentscompany.com