[1]

Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, et al. 2018. Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology & Evolution 2:1579−87

doi: 10.1038/s41559-018-0647-7
[2]

Radujković D, Portillo-Estrada M, Hendrickx B, Campetella G, Emsens WJ, et al. 2025. Soil biodiversity and ecosystem functions in grasslands: is more always better? Soil Biology and Biochemistry 211:109988

doi: 10.1016/j.soilbio.2025.109988
[3]

Wu L, Bai Y, Chen Y, Wei X, Wen N, et al. 2026. Straw return enhances soil multifunctionality by promoting protist-dominated microbial multitrophic interactions. Soil and Tillage Research 256:106903

doi: 10.1016/j.still.2025.106903
[4]

Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:457−63

doi: 10.1038/nature24621
[5]

Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, et al. 2018. Structure and function of the global topsoil microbiome. Nature 560:233−37

doi: 10.1038/s41586-018-0386-6
[6]

Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on earth. Proceedings of the National Academy of Sciences of the United States of America 115:6506−11

doi: 10.1073/pnas.1711842115
[7]

Zhang J, Feng Y, Maestre FT, Berdugo M, Wang J, et al. 2023. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nature Ecology & Evolution 7:1002−11

doi: 10.1038/s41559-023-02071-3
[8]

Creamer RE, Hannula SE, Van Leeuwen JP, Stone D, Rutgers M, et al. 2016. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology 97:112−24

doi: 10.1016/j.apsoil.2015.08.006
[9]

Lehmann A, Zheng W, Rillig MC. 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1:1828−35

doi: 10.1038/s41559-017-0344-y
[10]

Dai Z, Yu M, Chen H, Zhao H, Huang Y, et al. 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology 26:5267−76

doi: 10.1111/gcb.15211
[11]

Zhu X, Jackson RD, DeLucia EH, Tiedje JM, Liang C. 2020. The soil microbial carbon pump: from conceptual insights to empirical assessments. Global Change Biology 26:6032−39

doi: 10.1111/gcb.15319
[12]

Schnyder E, Bodelier PLE, Hartmann M, Henneberger R, Niklaus PA. 2023. Do temporal and spatial heterogeneity modulate biodiversity-functioning relationships in com-munities of methanotrophic bacteria? Soil Biology and Biochemistry 185:109141

doi: 10.1016/j.soilbio.2023.109141
[13]

Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72−76

doi: 10.1038/35083573
[14]

Zhou T, Delgado-Baquerizo M, Ren CJ, He NP, Zhou ZH, et al. 2025. Soil microbial life history strategies covary with ecosystem multifunctionality across aridity gradients. Proceedings of the National Academy of Sciences of the United States of America 122:e2511071122

doi: 10.1073/pnas.2511071122
[15]

Yu T, Jie X, Lei Y, Zhang B, Zang H, et al. 2025. Rhizobacteria shaped by long-term fertilization and wheat nutritional requirements improve grain yield and soil multifunctionality. Field Crops Research 333:110117

doi: 10.1016/j.fcr.2025.110117
[16]

Steudel B, Hallmann C, Lorenz M, Abrahamczyk S, Prinz K, et al. 2016. Contrasting biodiversity−ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist 212:409−20

doi: 10.1111/nph.14054
[17]

Sandau N, Naisbit RE, Fabian Y, Bruggisser OT, Kehrli P, et al. 2019. Understanding negative biodiversity–ecosystem functioning relationship in semi-natural wildflower strips. Oecologia 189:85−197

doi: 10.1007/s00442-018-4305-1
[18]

Jiang L, Pu Z, Nemergut DR. 2008. On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117:488−93

doi: 10.1111/j.0030-1299.2008.16401.x
[19]

Becker J, Eisenhauer N, Scheu S, Jousset A. 2012. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecology Letters 15:468−74

doi: 10.1111/j.1461-0248.2012.01759.x
[20]

Wang H, Zhang K, Zhang X, Yan Z, Yan L, et al. 2025. Changes in keystone species attenuate the complexity and stability of soil microbial networks during alpine meadow degradation. Ecological Indicators 179:114292

doi: 10.1016/j.ecolind.2025.114292
[21]

Banerjee S, Schlaeppi K, van der Heijden MGA. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology 16:567−76

doi: 10.1038/s41579-018-0024-1
[22]

Wang J, Peñuelas J, Shi X, Liu Y, Delgado Baquerizo M, et al. 2024. Soil microbial biodiversity supports the delivery of multiple ecosystem functions under elevated CO2 and warming. Communications Earth & Environment 5:615

doi: 10.1038/s43247-024-01767-z
[23]

Tardy V, Spor A, Mathieu O, Lévèque J, Terrat S, et al. 2015. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology and Biochemistry 90:204−13

doi: 10.1016/j.soilbio.2015.08.010
[24]

Domeignoz-Horta LA, Pold G, Liu XA, Frey SD, Melillo JM, et al. 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications 11:3684

doi: 10.1038/s41467-020-17502-z
[25]

Calderón K, Spor A, Breuil MC, Bru D, Bizouard F, et al. 2016. Effectiveness of ecological rescue for altered soil microbial communities and functions. The ISME Journal 11:272−83

doi: 10.1038/ismej.2016.86
[26]

Shao YH, Lu HP, Wu JH. 2025. Microbial diversity supports nitrification: insights from a full-scale anoxic/oxic wastewater treatment process. Applied and Environmental Microbiology 91:e0180325

doi: 10.1128/aem.01803-25
[27]

Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, et al. 2015. Bacterial diversity amplifies nutrient-based plant−soil feedbacks. Functional Ecology 29:1341−49

doi: 10.1111/1365-2435.12445
[28]

Wohl DL, Arora S, Gladstone JR. 2004. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534−40

doi: 10.1890/03-3050
[29]

Schnyder E, Bodelier, PLE, Hartmann, M, Henneberger R, Niklaus PA. 2018. Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 99:714−23

doi: 10.1002/ecy.2138
[30]

Jiang L. 2007. Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88:1075−85

doi: 10.1890/06-1556
[31]

Nan Q, Chi WC, Yang XL, Li SJ, Qin Y, et al. 2025. Long-term impacts of straw and biochar applications on microbial diversity and soil functions in paddy soils. Environmental Pollution 384:126934

doi: 10.1016/j.envpol.2025.126943
[32]

de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, et al. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications 9:3033

doi: 10.1038/s41467-018-05516-7
[33]

Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications 10:4841

doi: 10.1038/s41467-019-12798-y
[34]

Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, et al. 2001. An examination of the biodiversity−ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry 33:1713−22

doi: 10.1016/S0038-0717(01)00094-3
[35]

Zhang Q, Li Y, He Y, Liu H, Dumont MG, et al. 2019. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biology and Biochemistry 131:229−37

doi: 10.1016/j.soilbio.2019.01.006
[36]

Qiu YP, Jiang Y, Guo LJ, Burkey KO, Zobel RW, et al. 2018. Contrasting warming and ozone effects on denitrifiers dominate soil N2O emissions. Environmental Science & Technology 52:10956−66

doi: 10.1021/acs.est.8b01093
[37]

Hallin S, Jones CM, Schloter M, Philippot L. 2009. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. The ISME Journal 3:597−605

doi: 10.1038/ismej.2008.128
[38]

Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, et al. 2013. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. Isme Journal 8:1336−45

doi: 10.1038/ismej.2013.224
[39]

Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology 72:5181−89

doi: 10.1128/AEM.00231-06
[40]

Pester M, Maixner F, Berry D, Rattei T, Koch H, et al. 2014. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environmental Microbiology 16:3055−71

doi: 10.1111/1462-2920.12300
[41]

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335−36

doi: 10.1038/nmeth.f.303
[42]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194−200

doi: 10.1093/bioinformatics/btr381
[43]

Sul WJ, Cole JR, da C Jesus E, Wang Q, Farris RJ, et al. 2011. Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering. Proceedings of the National Academy of Sciences of the United States of America 108:14637−42

doi: 10.1073/pnas.1111435108
[44]

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. 2006. Greengenes, a Chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72:5069−72

doi: 10.1128/AEM.03006-05
[45]

Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al. 2008. The metagenomics RAST server − a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

doi: 10.1186/1471-2105-9-386
[46]

Jusselme MD, Saccone P, Zinger L, Faure M, Le Roux X, et al. 2016. Variations in snow depth modify N-related soil microbial abundances and functioning during winter in subalpine grassland. Soil Biology and Biochemistry 92:27−37

doi: 10.1016/j.soilbio.2015.09.013
[47]

Han S, Zeng L, Luo X, Xiong X, Wen S, et al. 2018. Shifts in Nitrobacter- and Nitrospira-like nitrite-oxidizing bacterial communities under long-term fertilization practices. Soil Biology and Biochemistry 124:118−25

doi: 10.1016/j.soilbio.2018.05.033
[48]

Deng Y, Jiang YH, Yang Y, He Z, Luo F, et al. 2012. Molecular ecological network analyses. BMC Bioinformatics 13:113

doi: 10.1186/1471-2105-13-113
[49]

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. HAMMER, HARPER & RYAN. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

[50]

Breiman L. 2001. Random forests. Machine Learning 45:5−32

doi: 10.1023/A:1010933404324
[51]

Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, et al. 2017. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters 20:1414−26

doi: 10.1111/ele.12849
[52]

Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, et al. 2020. Scaling-up biodiversity-ecosystem functioning research. Ecology Letters 23:757−76

doi: 10.1111/ele.13456
[53]

Ramond P, Galand PE, Logares R. 2025. Microbial functional diversity and redundancy: moving forward. FEMS Microbiology Reviews 49:fuae031

doi: 10.1093/femsre/fuae031
[54]

Nielsen UN, Ayres E, Wall DH, Bardgett RD. 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science 62:105−16

doi: 10.1111/j.1365-2389.2010.01314.x
[55]

Abell M, Braselton J, Braselton L. 2006. A model of allelopathy in the context of bacteriocin production. Applied Mathematics and Computation 183:916−31

doi: 10.1016/j.amc.2006.06.038
[56]

Fukami T, Dickie IA, Wilkie JP, Paulus BC, Park D, et al. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters 13:675−84

doi: 10.1111/j.1461-0248.2010.01465.x
[57]

Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, et al. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology 25:4059−74

doi: 10.1111/mec.13739
[58]

Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology 14:e1002352

doi: 10.1371/journal.pbio.1002352
[59]

Cram JA, Xia LC, Needham DM, Sachdeva R, Sun F, et al. 2015. Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. The ISME Journal 9:2573−86

doi: 10.1038/ismej.2015.76
[60]

Herren CM, McMahon KD. 2018. Keystone taxa predict compositional change in microbial communities. Environmental Microbiology 20:2207−17

doi: 10.1111/1462-2920.14257
[61]

van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69−72

doi: 10.1038/23932
[62]

Vogelsang KM, Reynolds HL, Bever JD. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist 172:554−62

doi: 10.1111/j.1469-8137.2006.01854.x