[1]

Kumar M, Tomar M, Potkule J, Verma R, Punia S, et al. 2021. Advances in the plant protein extraction: mechanism and recommendations. Food Hydrocolloids 115:106595

doi: 10.1016/j.foodhyd.2021.106595
[2]

FAOSTAT F. 2015. Statistics of the Food and Agriculture Organization of the United Nations [electronic document]. http://faostat3.fao.org/browse/Q/QC/E Accessed on 13 November

[3]

Wouters AGB, Rombouts I, Fierens E, Brijs K, Delcour JA. 2016. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety 15:786−800

doi: 10.1111/1541-4337.12209
[4]

Lusk JL, Norwood FB. 2009. Some economic benefits and costs of vegetarianism. Agricultural and Resource Economics Review 38:109−24

doi: 10.1017/S1068280500003142
[5]

Wu Y, Ma W, Liu Z, Chen B, Pan H, et al. 2023. Composite films based on a novel protein and chitosan: characterization and properties. Journal of Food Measurement and Characterization 17:87−97

doi: 10.1007/s11694-022-01610-z
[6]

Norman J. 2006. Lacquer: technology and conservation: a comprehensive guide to the technology and conservation of Asian and European Lacquer. Studies in Conservation 51:157−58

doi: 10.1179/sic.2006.51.2.157
[7]

Zhang FL, Zhang WQ, Wei SN. 2007. Study on Chinese lacquer tree resources and fined utilization. Journal of Chinese Lacquer 26:36−50, 60 (in Chinese)

doi: 10.19334/j.cnki.issn.1000-7067.2007.02.005
[8]

Long C, Cai K, Marr K, Guo X, Ouyang Z. 2003. Lacquer-based agroforestry system in western Yunnan, China. Agroforestry Systems 57:109−16

doi: 10.1023/A:1023911114431
[9]

Li M, Song X, Li J, Chen X, Li J, et al. 2023. Safety assessment of oil extracted from lacquer (Toxicodendron vernicifluum (Stokes) F.A. Barkley) seed: acute and subchronic toxicity studies in rats. Journal of Ethnopharmacology 302:115901

doi: 10.1016/j.jep.2022.115901
[10]

Yang XY, Shi LS, Gong T, Hu CY, Guo YR, et al. 2022. Structural modification induced by heat treatments improves the emulsifying attributes of lacquer seed protein isolate. International Journal of Biological Macromolecules 222:1700−8

doi: 10.1016/j.ijbiomac.2022.09.223
[11]

Wan YY, Lu R, Akiyama K, Okamoto K, Honda T, et al. 2010. Effects of lacquer polysaccharides, glycoproteins and isoenzymes on the activity of free and immobilised laccase from Rhus vernicifera. International Journal of Biological Macromolecules 47:76−81

doi: 10.1016/j.ijbiomac.2010.03.016
[12]

Can Karaca A, Assadpour E, Jafari SM. 2023. Plant protein-based emulsions for the delivery of bioactive compounds. Advances in Colloid and Interface Science 316:102918

doi: 10.1016/j.cis.2023.102918
[13]

Ismail BP, Senaratne-Lenagala L, Stube A, Brackenridge A. 2020. Protein demand: review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers 10:53−63

doi: 10.1093/af/vfaa040
[14]

O’sullivan J, Murray B, Flynn C, Norton I. 2016. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids 53:141−54

doi: 10.1016/j.foodhyd.2015.02.009
[15]

Hu H, Wu J, Li-Chan ECY, Zhu L, Zhang F, et al. 2013. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids 30:647−55

doi: 10.1016/j.foodhyd.2012.08.001
[16]

Wang Y, Li Z, Li H, Selomulya C. 2022. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Current Opinion in Food Science 48:100949

doi: 10.1016/j.cofs.2022.100949
[17]

Peng W, Kong X, Chen Y, Zhang C, Yang Y, et al. 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52:301−10

doi: 10.1016/j.foodhyd.2015.06.025
[18]

Tabanelli R, Brogi S, Calderone V. 2021. Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics 13:1715

doi: 10.3390/pharmaceutics13101715
[19]

Kharat M, Du Z, Zhang G, McClements DJ. 2017. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry 65:1525−32

doi: 10.1021/acs.jafc.6b04815
[20]

Schneider C, Gordon ON, Edwards RL, Luis PB. 2015. Degradation of curcumin: from mechanism to biological implications. Journal of Agricultural and Food Chemistry 63:7606−14

doi: 10.1021/acs.jafc.5b00244
[21]

Sabet S, Seal CK, Akbarinejad A, Rashidinejad A, McGillivray DJ. 2020. “Positive-negative-negative”: a colloidal delivery system for bioactive compounds. Food Hydrocolloids 107:105922

doi: 10.1016/j.foodhyd.2020.105922
[22]

Lin Q, Ge S, McClements DJ, Li X, Jin Z, et al. 2023. Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Critical Reviews in Food Science and Nutrition 63:4092−105

doi: 10.1080/10408398.2021.1997908
[23]

Li Q, Zheng J, Ge G, Zhao M, Sun W. 2020. Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocolloids 100:105167

doi: 10.1016/j.foodhyd.2019.06.012
[24]

He S, Gu C, Wang D, Xu W, Wang R, et al. 2020. The stability and in vitro digestion of curcumin emulsions containing Konjac glucomannan. LWT 117:108672

doi: 10.1016/j.lwt.2019.108672
[25]

Gong T, Chen B, Hu CY, Guo YR, Shen YH, et al. 2022. Resveratrol inhibits lipid and protein co-oxidation in sodium caseinate-walnut oil emulsions by reinforcing oil-water interface. Food Research International 158:111541

doi: 10.1016/j.foodres.2022.111541
[26]

Zhu Z, Zhu W, Yi J, Liu N, Cao Y, et al. 2018. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International 106:853−61

doi: 10.1016/j.foodres.2018.01.060
[27]

Pham LB, Wang B, Zisu B, Adhikari B. 2019. Complexation between flaxseed protein isolate and phenolic compounds: effects on interfacial, emulsifying and antioxidant properties of emulsions. Food Hydrocolloids 94:20−29

doi: 10.1016/j.foodhyd.2019.03.007
[28]

Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. 2003. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329:23−38

doi: 10.1016/S0009-8981(03)00003-2
[29]

Gong T, Tian D, Hu CY, Guo YR, Meng YH. 2022. Improving antioxidant ability of functional emulsifiers by conjugating polyphenols to sodium caseinate. LWT 154:112668

doi: 10.1016/j.lwt.2021.112668
[30]

Zhang X, Qi B, Xie F, Hu M, Sun Y, et al. 2021. Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: influence of pH. Food Hydrocolloids 113:106391

doi: 10.1016/j.foodhyd.2020.106391
[31]

Ji Y, Han C, Liu E, Li X, Meng X, et al. 2022. Pickering emulsions stabilized by pea protein isolate-chitosan nanoparticles: fabrication, characterization and delivery EPA for digestion in vitro and in vivo. Food Chemistry 378:132090

doi: 10.1016/j.foodchem.2022.132090
[32]

Han J, Chen F, Gao C, Zhang Y, Tang X. 2020. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. International Journal of Biological Macromolecules 157:202−11

doi: 10.1016/j.ijbiomac.2020.04.177
[33]

Huang Y, Zhan Y, Luo G, Zeng Y, McClements DJ, et al. 2023. Curcumin encapsulated zein/caseinate-alginate nanoparticles: release and antioxidant activity under in vitro simulated gastrointestinal digestion. Current Research in Food Science 6:100463

doi: 10.1016/j.crfs.2023.100463
[34]

Jin J, Okagu OD, Yagoub AEA, Udenigwe CC. 2021. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry 70:105348

doi: 10.1016/j.ultsonch.2020.105348
[35]

Lavado G, Higuero N, León-Camacho M, Cava R. 2021. Formation of lipid and protein oxidation products during in vitro gastrointestinal digestion of dry-cured loins with different contents of nitrate/nitrite added. Foods 10:1748

doi: 10.3390/foods10081748
[36]

Alavi F, Emam-Djomeh Z, Momen S, Mohammadian M, Salami M, et al. 2019. Effect of free radical-induced aggregation on physicochemical and interface-related functionality of egg white protein. Food Hydrocolloids 87:734−46

doi: 10.1016/j.foodhyd.2018.08.048
[37]

Davidov-Pardo G, McClements DJ. 2014. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in Food Science & Technology 38:88−103

doi: 10.1016/j.jpgs.2014.05.003
[38]

Álvarez R, Giménez B, Mackie A, Torcello-Gómez A, Quintriqueo A, et al. 2022. Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during in vitro gastrointestinal digestion. Food & Function 13:1370−79

doi: 10.1039/D1FO03688B
[39]

Jiang T, Charcosset C. 2022. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: impact of droplet size and carrier oil on the chemical stability of curcumin. Food Research International 157:111475

doi: 10.1016/j.foodres.2022.111475
[40]

Keerati-u-rai M, Corredig M. 2009. Heat-induced changes in oil-in-water emulsions stabilized with soy protein isolate. Food Hydrocolloids 23:2141−48

doi: 10.1016/j.foodhyd.2009.05.010
[41]

Cui Z, Chen Y, Kong X, Zhang C, Hua Y. 2014. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level. Journal of Agricultural and Food Chemistry 62:1634−42

doi: 10.1021/jf404464z
[42]

Xiao Z, Zhang Y, Chen X, Wang Y, Chen W, et al. 2017. Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit. Food Chemistry 231:324−31

doi: 10.1016/j.foodchem.2017.03.111
[43]

Gong T, Song Z, Zhang S, Meng Y, Guo Y. 2024. Young apple polyphenols confer excellent physical and oxidative stabilities to soy protein emulsions for effective β-carotene encapsulation and delivery. International Journal of Biological Macromolecules 275:133607

doi: 10.1016/j.ijbiomac.2024.133607
[44]

Kharat M, Skrzynski M, Decker EA, McClements DJ. 2020. Enhancement of chemical stability of curcumin-enriched oil-in-water emulsions: impact of antioxidant type and concentration. Food Chemistry 320:126653

doi: 10.1016/j.foodchem.2020.126653
[45]

Falowo AB, Fayemi PO, Muchenje V. 2014. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: a review. Food Research International 64:171−81

doi: 10.1016/j.foodres.2014.06.022
[46]

Song ZC, Zhang H, Niu PF, Shi LS, Yang XY, et al. 2023. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chemistry 420:136110

doi: 10.1016/j.foodchem.2023.136110
[47]

Bao Y, Pignitter M. 2023. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Comprehensive Reviews in Food Science and Food Safety 22:2678−705

doi: 10.1111/1541-4337.13158
[48]

Chen J, He J, Zhao Z, Li X, Tang J, et al. 2023. Effect of heat treatment on the physical stability, interfacial composition and protein-lipid co-oxidation of whey protein isolate-stabilised O/W emulsions. Food Research International 172:113126

doi: 10.1016/j.foodres.2023.113126
[49]

Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen A-DM, García-Moreno PJ, et al. 2023. Oxidation and oxidative stability in emulsions. Comprehensive Reviews in Food Science and Food Safety 22:1864−901

doi: 10.1111/1541-4337.13134
[50]

Johnson DR, Decker EA. 2015. The role of oxygen in lipid oxidation reactions: a review. Annual Review of Food Science and Technology 6:171−90

doi: 10.1146/annurev-food-022814-015532
[51]

Araiza-Calahorra A, Akhtar M, Sarkar A. 2018. Recent advances in emulsion-based delivery approaches for curcumin: from encapsulation to bioaccessibility. Trends in Food Science & Technology 71:155−69

doi: 10.1016/j.jpgs.2017.11.009
[52]

Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M. 2011. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proceedings of the National Academy of Sciences 108:6615−20

doi: 10.1073/pnas.1016217108
[53]

Sabet S, Rashidinejad A, Qazi HJ, McGillivray DJ. 2021. An efficient small intestine-targeted curcumin delivery system based on the positive-negative-negative colloidal interactions. Food Hydrocolloids 111:106375

doi: 10.1016/j.foodhyd.2020.106375
[54]

Singh H, Ye A, Horne D. 2009. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research 48:92−100

doi: 10.1016/j.plipres.2008.12.001
[55]

Gonçalves RFS, Martins JT, Abrunhosa L, Baixinho J, Matias AA, et al. 2021. Lipid-based nanostructures as a strategy to enhance curcumin bioaccessibility: behavior under digestion and cytotoxicity assessment. Food Research International 143:110278

doi: 10.1016/j.foodres.2021.110278
[56]

Zhang R, McClements DJ. 2016. Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: emulsion-based delivery and excipient systems. Food structure 10:21−36

doi: 10.1016/j.foostr.2016.07.006
[57]

Umeda T, Kozu H, Kobayashi I. 2025. The influence of droplet size and emulsifiers on the in vitro digestive properties of bimodal oil-in-water emulsions. Foods 14:1239

doi: 10.3390/foods14071239
[58]

Acevedo-Fani A, Singh H. 2022. Biophysical insights into modulating lipid digestion in food emulsions. Progress in Lipid Research 85:101129

doi: 10.1016/j.plipres.2021.101129
[59]

Yu B, Chen Q, Regenstein JM, Ye C, Wang L. 2023. The lipid digestion behavior of oil-in-water emulsions stabilized by different particle-sized insoluble dietary fiber from citrus peel. Food Chemistry: X 19:100831

doi: 10.1016/j.fochx.2023.100831
[60]

Sarkar A, Li H, Cray D, Boxall S. 2018. Composite whey protein–cellulose nanocrystals at oil-water interface: towards delaying lipid digestion. Food Hydrocolloids 77:436−44

doi: 10.1016/j.foodhyd.2017.10.020
[61]

Khan MA, Chen L, Liang L. 2021. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocolloids 113:106477

doi: 10.1016/j.foodhyd.2020.106477
[62]

Lin J, Tang ZS, Brennan CS, Zeng XA. 2022. Thermomechanically micronized sugar beet pulp: dissociation mechanism, physicochemical characteristics, and emulsifying properties. Food Research International 160:111675

doi: 10.1016/j.foodres.2022.111675
[63]

Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14:991−1014

doi: 10.1038/s41596-018-0119-1
[64]

Pan R, Iqbal S, Wang N, Wu P, Chen H, et al. 2025. Alteration in rheological and digestive properties of O/W emulsions using controlled aggregation of konjac glucomannan and xanthan gum in aqueous phases. Food Hydrocolloids 160:110795

doi: 10.1016/j.foodhyd.2024.110795