[1]

Wang P, Chen H, Kopittke PM, Zhao FJ. 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution 249:1038−48

doi: 10.1016/j.envpol.2019.03.063
[2]

Dahuja A, Kumar RR, Sakhare A, Watts A, Singh B, et al. 2021. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologica Plantarum 171:785−801

doi: 10.1111/ppl.13302
[3]

Guo Z, Yuan X, Li L, Zeng M, Yang J, et al. 2022. Genome-wide analysis of the ATP-binding cassette (ABC) transporter family in Zea mays L. and its response to heavy metal stresses. International Journal of Molecular Sciences 23:2109

doi: 10.3390/ijms23042109
[4]

Do THT, Martinoia E, Lee Y. 2018. Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology 41:32−38

doi: 10.1016/j.pbi.2017.08.003
[5]

Zhang XD, Zhao KX, Yang ZM. 2018. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene 664:139−51

doi: 10.1016/j.gene.2018.04.060
[6]

Ofori PA, Mizuno A, Suzuki M, Martinoia E, Reuscher S, et al. 2018. Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS One 13:e0200854

doi: 10.1371/journal.pone.0200854
[7]

Qiao Y, Chen ZJ, Liu J, Nan Z, Yang H. 2022. Genome-wide identiffcation of Oryza sativa: a new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene 834:146613

doi: 10.1016/j.gene.2022.146613
[8]

Saha J, Sengupta A, Gupta K, Gupta B. 2015. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Computational Biology and Chemistry 54:18−32

doi: 10.1016/j.compbiolchem.2014.11.005
[9]

Kang J, Park J, Choi H, Burla B, Kretzschmar T, et al. 2011. Plant ABC transporters. The Arabidopsis Book 9:e0153

doi: 10.1199/tab.0153
[10]

Jenness MK, Carraro N, Pritchard CA, Murphy AS. 2019. The Arabidopsis ATP-binding cassette transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Frontiers in Plant Science 10:806

doi: 10.3389/fpls.2019.00806
[11]

Chen J, Hu Y, Hao P, Tsering T, Xia J, et al. 2023. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Reports 24:e56271

doi: 10.15252/embr.202256271
[12]

Balzan S, Johal GS, Carraro N. 2014. The role of auxin transporters in monocots development. Frontiers in Plant Science 5:393

doi: 10.3389/fpls.2014.00393
[13]

Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, et al. 2013. Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiology 162:1947−55

doi: 10.1104/pp.113.219147
[14]

Park J, Song WY, Ko D, Eom Y, Hansen TH, et al. 2012. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal 69:278−88

doi: 10.1111/j.1365-313X.2011.04789.x
[15]

Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, et al. 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant Cell 21:655−67

doi: 10.1105/tpc.108.064543
[16]

Fu S, Lu Y, Zhang X, Yang G, Chao D, et al. 2019. The ABC transporter ABCG36 is reuqired for cadmium tolerance in rice. Journal of Experimental Botany 70:5909−18

doi: 10.1093/jxb/erz335
[17]

Li H, Li C, Sun D, Yang ZM. 2024. OsPDR20 is an ABCG metal transporter regulating cadmium accumulation in rice. Journal of Environmental Sciences 136:21−34

doi: 10.1016/j.jes.2022.09.021
[18]

EI-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al. 2019. The pfam protein families database in 2019. Nucleic Acids Research 47:D427−D432

doi: 10.1093/nar/gky995
[19]

Tordai H, Suhajda E, Sillitoe I, Nair S, Varadi M, et al. 2022. Comprehensive collection and prediction of ABC transmembrane protein structures in the AI era of structural biolgoy. International Journal of Molecular Sciences 23:8877

doi: 10.3390/ijms23168877
[20]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[21]

Nasim J, Malviya N, Kumar R, Yadav D. 2016. Genome-wide bioinformatics analysis of Dof transcription factor gene family of chickpea and its comparative phylogenetic assessment with Arabidopsis and rice. Plant Systematics and Evolution 302:1009−26

doi: 10.1007/s00606-016-1314-6
[22]

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[23]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[24]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[25]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[26]

Xue M, Zhou Y, Yang Z, Lin B, Yuan J, et al. 2014. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.). Frontiers of Environmental Science & Engineering 8:226−38

doi: 10.1007/s11783-013-0582-4
[27]

Zhou Q, Guo JJ, He CT, Shen C, Huang YY, et al. 2016. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environmental Science & Technology 50:6485−94

doi: 10.1021/acs.est.5b06326
[28]

Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, et al. 2016. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant, Cell & Environment 39:2629−49

doi: 10.1111/pce.12793
[29]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[30]

Elble R. 1992. A simple and efficient procedure for transformation of yeasts. BioTechniques 13:18−20

[31]

Khan KA. 2022. Genome wide analysis of ATP-binding Cassette (ABC) transporter in the eastern honey bee (Apis cerana Fabricius, 1793). Journal of King Saud University − Science 34:101766

doi: 10.1016/j.jksus.2021.101766
[32]

Flagel LE, Wendel JF. 2009. Gene duplication and evolutionary novelty in plants. New Phytologist 183:557−64

doi: 10.1111/j.1469-8137.2009.02923.x
[33]

Moore RC, Purugganan MD. 2005. The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology 8:122−28

doi: 10.1016/j.pbi.2004.12.001
[34]

Mattick JS, Gagen MJ. 2001. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Molecular Biology and Evolution 18:1611−30

doi: 10.1093/oxfordjournals.molbev.a003951
[35]

Jeffares DC, Penkett CJ, Bähler J. 2008. Rapidly regulated genes are intron poor. Trends in Genetics 24:375−78

doi: 10.1016/j.tig.2008.05.006
[36]

Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, et al. 2019. Alternative splicing and protein diversity: plants versus animals. Frontiers in Plant Science 10:708

doi: 10.3389/fpls.2019.00708
[37]

Afzal Malik W, Afzal M, Chen X, Cui R, Lu X, et al. 2022. Systematic analysis and comparison of ABC proteins superfamily confer structural, functional and evolutionary insights into four cotton species. Industrial Crops and Products 177:114433

doi: 10.1016/j.indcrop.2021.114433
[38]

Feng S, Li N, Chen H, Liu Z, Li C, et al. 2024. Large-scale analysis of the ARF and Aux/IAA gene families in 406 horticultural and other plants. Molecular Horticulture 4:13

doi: 10.1186/s43897-024-00090-7
[39]

Nguyen VNT, Moon S, Jung KH. 2014. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. Journal of Plant Physiology 171:1276−88

doi: 10.1016/j.jplph.2014.05.006
[40]

Loza-Muller L, Shitan N, Yamada Y, Vázquez-Flota F. 2021. AmABCB1, an alkaloid transporter from seeds of Argemone mexicana L (Papaveraceae). Planta 254:122

doi: 10.1007/s00425-021-03780-4
[41]

Yang G, Fu S, Huang J, Li L, Long Y, et al. 2021. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Science 307:110894

doi: 10.1016/j.plantsci.2021.110894
[42]

Schaedler TA, Thornton JD, Kruse I, Schwarzländer M, Meyer AJ, et al. 2014. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. Journal of Biological Chemistry 289:23264−74

doi: 10.1074/jbc.M114.553438
[43]

Wang H, Liu Y, Peng Z, Li J, Huang W, et al. 2019b. Ectopic expression of Poplar ABC transporter PtoACBG36 confers Cd tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences 20:3293−305

doi: 10.3390/ijms20133293
[44]

Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, et al. 2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany 66:3815−29

doi: 10.1093/jxb/erv185
[45]

Liu Z, Shen S, Li C, Zhang C, Chen X, et al. 2025. SoIR: a comprehensive Solanaceae information resource for comparative and functional genomic study. Nucleic Acids Research 53:D1623−D1632

doi: 10.1093/nar/gkae1040