[1]

Emeriewen OF, Richter K, Flachowsky H, Malnoy M, Peil A. 2021. Genetic analysis and fine mapping of the fire blight resistance locus of Malus × arnoldiana on linkage group 12 reveal first candidate genes. Frontiers in Plant Science 12:667133

doi: 10.3389/fpls.2021.667133
[2]

Schröpfer S, Vogt I, Broggini GAL, Dahl A, Richter K, et al. 2021. Transcriptional profile of AvrRpt2EA-mediated resistance and susceptibility response to Erwinia amylovora in apple. Scientific Reports 11:8685

doi: 10.1038/s41598-021-88032-x
[3]

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614−29

doi: 10.1111/j.1364-3703.2012.00804.x
[4]

Zhao YQ, Tian YL, Wang LM, Geng GM, Zhao WJ, et al. 2019. Fire blight disease, a fast-approaching threat to apple and pear production in China. Journal of Integrative Agriculture 18:815−20

doi: 10.1016/S2095-3119(18)62033-7
[5]

Drenova N, Isin MM, Dzhaimurzina AA, Zharmukhamedova GA, Aitkulov AK. 2013. Bacterial fire blight in the Republic of Kazakhstan. Карантин Растений. Наука И Практика 1:44−48

[6]

Doolotkeldieva T, Bobusheva S. 2016. Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Advances in Microbiology 6:831−51

doi: 10.4236/aim.2016.611080
[7]

Park DH, Yu JG, Oh EJ, Han KS, Yea MC, et al. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Disease 100:1946

doi: 10.1094/pdis-11-15-1364-pdn
[8]

Wang J, Gao JC, Bayinkexike, Muyassar M, Zhang JH, et al. 2022. Blocking field spread of fire blight by electric heating automatic disinfection pruning scissors. Plant Quarantine 36:25−28 (in Chinese)

doi: 10.19662/j.cnki.issn1005-2755.2021.00.023
[9]

General Office of Ministry of Agriculture and Rural Affairs. 2023. Notice of the General Office of The Ministry of Agriculture and Rural Affairs on printing and distributing the national list of administrative regions where agricultural plant quarantine pests are distributed. Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China 10:44

[10]

Chen LK, Xu YT, Wang YP, He LZ, Ceng B, et al. 2022. Evaluation of fire blight resistance of Pyrus sinkiangensis Yu germplasm resources. China Fruits 8:16−22 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2022.08.004
[11]

Lu YH, Hao JH, Luo M, Huang W, Sheng Q, et al. 2021. Screening of antagonistic bacteria against Erwinia amylovora and its control effect in greenhouse. Microbiology 48:3690−99 (in Chinese)

doi: 10.13344/j.microbiol.china.201121
[12]

Xu LY, Gulizzier M, Han J, Jiang P, Huang W, et al. 2021. Screening of endophytic antagonistic bacteria from 'Kuerlexiangli' pear and their biocontrol potential against fire blight disease. Acta Botanica Boreali-Occidentalia Sinica 41:132−41 (in Chinese)

doi: 10.7606/j.issn.1000-4025.2021.01.0132
[13]

Li HT, Zhang JW, Sheng Q, Tang ZH, Zhang XL, et al. 2019. Resistance evaluation of 20 pear varieties (germplasms) in China to foreign strains of Erwinia amylovora. Journal of Fruit Science 36:629−37 (in Chinese)

doi: 10.13925/j.cnki.gsxb.20180295
[14]

He LZ, Zhang XL, Ye CX, Chen LK, Wang YP, et al. 2023. Evaluation of Resistance of Four Pear Rootstocks to Pear Fire Blight. Acta Agriculturae Boreali-occidentalis Sinica 32:458−67 (in Chinese)

doi: 10.7606/j.issn.1004-1389.2023.03.014
[15]

Wang DJ, Gao Y, Zhang YG, Zhang XL, Sun SM, et al. 2022. Evaluation and screening of Malus germplasm resources with fire blight resistance. Journal of Plant Genetic Resources 23:1682−95 (in Chinese)

doi: 10.13430/j.cnki.jpgr.20220629002
[16]

Norelli JL, Holleran HT, Johnson WC, Robinson TL, Aldwinckle HS. 2003. Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Disease 87:26−32

doi: 10.1094/PDIS.2003.87.1.26
[17]

Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. 2021. Status of fire blight resistance breeding in Malus. Journal of Plant Pathology 103:3−12

doi: 10.1007/s42161-020-00581-8
[18]

Sparla F, Rotino L, Valgimigli MC, Pupillo P, Trost P. 2004. Systemic resistance induced by benzothiadiazole in pear inoculated with the agent of fire blight (Erwinia amylovora). Scientia Horticulturae 101:269−79

doi: 10.1016/j.scienta.2003.11.009
[19]

Sharifazizi M, Harighi B, Sadeghi A. 2017. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biological Control 104:28−34

doi: 10.1016/j.biocontrol.2016.10.007
[20]

Ji ZJ, Ge HJ, Xu XY. 2009. Identification method of tomato Helmlnthosporlum fruit rot at seedling stage and screening of resistant germplasm resources. Journal of Northeast Agricultural University 40:23−27 (in Chinese)

doi: 10.3969/j.issn.1005-9369.2009.11.006
[21]

Van Der Zwet T, Keil HL. (Eds.) 1979. Fire blight: a bacterial disease of rosaceous plants. Washington: US Department of Agriculture. 195 pp

[22]

Farkas Á, Mihalik E, Dorgai L, Bubán T. 2012. Floral traits affecting fire blight infection and management. Trees 26:47−66

doi: 10.1007/s00468-011-0627-x
[23]

Jiang CC, Zeng SM, Chen XM, Hu NS, Huang XZ. 2022. Field resistance evaluation of 110 pear germplasm resources to major leaf diseases. South China Fruits 51:170−77,181 (in Chinese)

doi: 10.13938/j.issn.1007-1431.20220010
[24]

Korba J, Šillerová J, Kůdela V. 2008. Resistance of apple varieties and selections to Erwinia amylovora in the Czech Republic. Plant Protection Science 44:91−96

doi: 10.17221/19/2008-PPS
[25]

Harshman JM, Evans KM, Allen H, Potts R, Flamenco J, et al. 2017. Fire blight resistance in wild accessions of Malus sieversii. Plant Disease 101:1738−45

doi: 10.1094/PDIS-01-17-0077-RE
[26]

Ozrenk K, Balta F, Guleryuz M, Kan T. 2011. Fire blight (Erwinia amylovora) resistant/susceptibility of native apple germplasm from eastern Turkey. Crop Protection 30:526−30

doi: 10.1016/j.cropro.2010.11.023
[27]

Liu HW, Wang XM, Guo QY, Han LJ, Cao YF, et al. 2008. Study on resistance of pear germplasm to pear fire blight. Journal of Plant Genetic Resources 9:195−200 (in Chinese)

doi: 10.13430/j.cnki.jpgr.2008.02.024
[28]

Zhu L, Ran B, Zhang SJ, Jian JN, Tang SM, et al. 2025. Evaluation and Screening of Fire Blight Resistance in 258 Accessions of Malus sieversii Germplasm Resources. Journal of Plant Genetic Resources 26:1845−57 (in Chinese)

doi: 10.13430/j.cnki.jpgr.20250306002
[29]

Cao YZ, Chen WM, Zhang SJ, Lu B, Cui ZJ, et al. 2024. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Erwinia amylovora. Plant Quarantine 38:33−46 (in Chinese)

doi: 10.19662/j.cnki.issn1005-2755.2024.01.005
[30]

Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, et al. 2007. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126:470−75

doi: 10.1111/j.1439-0523.2007.01408.x
[31]

Peil A, Wöhner T, Hanke MV, Flachowsky H, Richter K, et al. 2014. Comparative mapping of fire blight resistance in Malus. Acta Horticulturae 1056:47−51

doi: 10.17660/actahortic.2014.1056.4
[32]

Kostick SA, Teh SL, Evans KM. 2021. Contributions of reduced susceptibility alleles in breeding apple cultivars with durable resistance to fire blight. Plants 10:409

doi: 10.3390/plants10020409
[33]

Liu ZY, Su XL, Tang L, Lei CH, Li YP, et al. 2024. An evaluation protocol for fire blight resistance of pear cultivars. Fujian Journal of Agricultural Sciences 39:609−14 (in Chinese)

[34]

Wang JH, Han LL, Zhang SJ, Chen WM, Zhang XC. 2023. Identification and evaluation of resistance of hawthorn germplasm resources to pear fire blight in Xinjiang. Northern Horticulture 24:30−37 (in Chinese)

doi: 10.11937/bfyy.20232899
[35]

Jing J, Zhang SJ, Dulibibi M, Wang WJ, Wang BW, et al. 2023. Evaluation on the resistance of seven varieties of begonia to Erwinia amylovora. China Fruits 11:70−75 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2023.11.012
[36]

Bühlmann-Schütz S, Hodel M, Dorfmann E, Vonmetz L, Lussi L, et al. 2024. Comparison between artificial fire blight shoot and flower inoculations in apple. Journal of Plant Pathology 106:903−12

doi: 10.1007/s42161-023-01550-7
[37]

Zhu L, Zhang SJ, Ran B, Dong SL, Jian JN, et al. 2024. Identification and evaluation of resistance of 14 Malus sieversii f. neidzwetzkyana (Dieck) Langenf. germplasm resources to pear fire blight. Plant Quarantine 38:1−6 (in Chinese)

doi: 10.19662/j.cnki.issn1005-2755.2024.05.001
[38]

Bacete L, Mélida H, Pattathil S, Hahn MG, Molina A, et al. 2017. Characterization of plant cell wall damage-associated molecular patterns regulating immune responses. In Plant Pattern Recognition Receptors: Methods and Protocols, eds. Shan L, He P. New York, USA: Humana Press. pp. 13−23 doi: 10.1007/978-1-4939-6859-6_2

[39]

Wang B, Tian J. 2024. Association analysis of leaf structure and defense enzyme activity with fire blight resistance in different pear germplasms. China Fruits 10:113−23 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2024.10.016
[40]

Şahin M. 2023. Association between resistance to fire blight disease and leaf characteristics in quince progenies. Erwerbs-Obstbau 65:751−59

doi: 10.1007/s10341-022-00739-x
[41]

Adomako J, Osei MK, Prempeh RNA, Osei-Bonsu I, Gyau J, et al. 2024. Identification of Ralstonia solanacearum resistant solanum plants as potential rootstock to manage bacterial wilt disease in tomato production. Technology in Horticulture 4:e020

doi: 10.48130/tihort-0024-0017
[42]

Khan MA, Zhao YF, Korban SS. 2013. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiologia Plantarum 148:344−53

doi: 10.1111/ppl.12068
[43]

Li P, Tan X, Wanghao, Sun L, Jiang J, et al. 2023. Transcriptome analysis of resistant and susceptible grapes reveals molecular mechanisms underlying resistance of white rot disease. Horticulture Advances 1:9

doi: 10.1007/s44281-023-00011-6
[44]

Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, et al. 2013. A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC−NBS−LRR. Tree Genetics & Genomes 9:237−51

doi: 10.1007/s11295-012-0550-3
[45]

Piazza S, Campa M, Pompili V, Dalla Costa L, Salvagnin U, et al. 2021. The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple. Horticulture Research 8:204

doi: 10.1038/s41438-021-00639-3