[1]

Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology 45:36−49

doi: 10.1016/j.pbi.2018.05.001
[2]

Zhang B, Feng C, Chen L, Li B, Zhang X, et al. 2022. Identification and functional analysis of bZIP genes in cotton response to drought stress. International Journal of Molecular Sciences 23:14894

doi: 10.3390/ijms232314894
[3]

Duan L, Mo Z, Fan Y, Li K, Yang M, et al. 2022. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 23:318

doi: 10.1186/s12864-022-08547-z
[4]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[5]

Rolly NK, Imran QM, Shahid M, Imran M, Khan M, et al. 2020. Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis. Plant Physiology and Biochemistry 156:384−95

doi: 10.1016/j.plaphy.2020.09.013
[6]

Liu J, Chu J, Ma C, Jiang Y, Ma Y, et al. 2019. Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis. Plant Cell Reports 38:587−96

doi: 10.1007/s00299-019-02389-y
[7]

Liang C, Meng Z, Meng Z, Malik W, Yan R, et al. 2016. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports 6:35040

doi: 10.1038/srep35040
[8]

Ji X, Liu G, Liu Y, Zheng L, Nie X, et al. 2013. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biology 13:151

doi: 10.1186/1471-2229-13-151
[9]

Li Q, Wu Q, Wang A, Lv B, Dong Q, et al. 2019. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Hysiology and Biochemistry 144:312−23

doi: 10.1016/j.plaphy.2019.10.003
[10]

Li XY, Liu X, Yao Y, Li YH, Liu S, et al. 2013. Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. International Journal of Molecular Sciences 14:12827−42

doi: 10.3390/ijms140612827
[11]

Dröge-Laser W, Weiste C. 2018. The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends in Plant Science 23:422−33

doi: 10.1016/j.tplants.2018.02.003
[12]

Lin Z, Li Y, Wang Y, Liu X, Ma L, et al. 2021. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications 12:2456

doi: 10.1038/s41467-021-22812-x
[13]

Song J, Sun P, Kong W, Xie Z, Li C, et al. 2023. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. New Phytologist 238:216−36

doi: 10.1111/nph.18526
[14]

Wang J, Li Q, Mao X, Li A, Jing R. 2016. Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. International Journal of Biological Sciences 12:257−69

doi: 10.7150/ijbs.13538
[15]

Xiang Y, Tang N, Du H, Ye H, Xiong L. 2008. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148:1938−52

doi: 10.1104/pp.108.128199
[16]

Lu G, Gao C, Zheng X, Han B. 2009. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605−15

doi: 10.1007/s00425-008-0857-3
[17]

Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, et al. 2010. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459−73

doi: 10.1007/s00425-010-1147-4
[18]

Tu M, Wang X, Zhu Y, Wang D, Zhang X, et al. 2018. VlbZIP30 of grapevine functions in dehydration tolerance via the abscisic acid core signaling pathway. Horticulture Research 5:49

doi: 10.1038/s41438-018-0054-x
[19]

Li Q, Zhao H, Wang X, Kang J, Lv B, et al. 2020. Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2.6, can improve salt/drought resistance in transgenic Arabidopsis. International Journal of Molecular Sciences 21:1123

doi: 10.3390/ijms21031123
[20]

Zong W, Tang N, Yang J, Peng L, Ma S, et al. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171:2810−25

doi: 10.1104/pp.16.00469
[21]

Joo H, Lim CW, Lee SC. 2019. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. Plant Journal 100:399−410

doi: 10.1111/tpj.14451
[22]

Lu C, Liu X, Tang Y, Fu Y, Zhang J, et al. 2024. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. International Journal of Biological Macromolecules 258:128880

doi: 10.1016/j.ijbiomac.2023.128880
[23]

Ma H, Liu C, Li Z, Ran Q, Xie G, et al. 2018. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology 178:753−70

doi: 10.1104/pp.18.00436
[24]

Feng Y, Wang Y, Zhang G, Gan Z, Gao M, et al. 2021. Group-C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species. Plant Journal 107:399−417

doi: 10.1111/tpj.15296
[25]

Zhang JY, Qu SC, Qiao YS, Zhang Z, Guo ZR. 2014. Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Molecular Biology Reports 41:1553−61

doi: 10.1007/s11033-013-3001-9
[26]

Gai WX, Ma X, Qiao YM, Shi BH, Haq SU, et al. 2020. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Frontiers in Plant Science 11:139

doi: 10.3389/fpls.2020.00139
[27]

Wang Y, Gao C, Liang Y, Wang C, Yang C, et al. 2010. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. Journal of Plant Physiology 167:222−30

doi: 10.1016/j.jplph.2009.09.008
[28]

Liu C, Mao B, Ou S, Wang W, Liu L, et al. 2014. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology 84:19−36

doi: 10.1007/s11103-013-0115-3
[29]

Ying S, Zhang DF, Fu J, Shi YS, Song YC, et al. 2012. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253−66

doi: 10.1007/s00425-011-1496-7
[30]

Kang C, Zhai H, He S, Zhao N, Liu Q. 2019. A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Cell Reports 38:1373−82

doi: 10.1007/s00299-019-02441-x
[31]

Rolly NK, Imran QM, Lee IJ, Yun BW. 2020. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. International Journal of Molecular Sciences 21:1726

doi: 10.3390/ijms21051726
[32]

Liu JX, Srivastava R, Howell SH. 2008. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant, Cell & Environment 31:1735−43

doi: 10.1111/j.1365-3040.2008.01873.x
[33]

Wang H, Zhang Y, Norris A, Jiang CZ. 2022. S1-bZIP transcription factors play important roles in the regulation of fruit quality and stress response. Frontiers in Plant Science 12:802802

doi: 10.3389/fpls.2021.802802
[34]

D'Angeli S, Matteucci M, Fattorini L, Gismondi A, Ludovici M, et al. 2016. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy. Planta 243:1279−96

doi: 10.1007/s00425-016-2490-x
[35]

Liu C, Schläppi MR, Mao B, Wang W, Wang A, et al. 2019. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnology Journal 17:1834−49

doi: 10.1111/pbi.13104
[36]

Abro AA, Qasim M, Abbas M, Muhammad N, Ali I, et al. 2025. Integrating physiological and molecular insights in cotton under cold stress conditions. Genetic Resources and Crop Evolution 72:2561−91

doi: 10.1007/s10722-024-02143-8
[37]

Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, et al. 2008. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225−40

doi: 10.1007/s00425-008-0731-3
[38]

Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany 59:839−48

doi: 10.1093/jxb/erm364
[39]

Wang B, Du H, Zhang Z, Xu W, Deng X. 2017. BhbZIP60 from resurrection plant Boea hygrometrica is an mRNA splicing-activated endoplasmic reticulum stress regulator involved in drought tolerance. Frontiers in Plant Science 8:245

doi: 10.3389/fpls.2017.00245
[40]

Davoudi M, Chen J, Lou Q. 2022. Genome-wide identification and expression analysis of heat shock protein 70 (HSP70) gene family in pumpkin (Cucurbita moschata) rootstock under drought stress suggested the potential role of these chaperones in stress tolerance. International Journal of Molecular Sciences 23:1918

doi: 10.3390/ijms23031918
[41]

Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, et al. 2012. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Molecular Plant 5:504−14

doi: 10.1093/mp/ssr115
[42]

Nagashima Y, Mishiba KI, Suzuki E, Shimada Y, Iwata Y, et al. 2011. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Scientific Reports 1:29

doi: 10.1038/srep00029
[43]

Li Z, Tang J, Srivastava R, Bassham DC, Howell SH. 2020. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. The Plant Cell 32:3559−75

doi: 10.1105/tpc.20.00260
[44]

Reis PAB, Carpinetti PA, Freitas PPJ, Santos EGD, Camargos LF, et al. 2016. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC Plant Biology 16:156

doi: 10.1186/s12870-016-0843-z
[45]

Wang H, Niu H, Zhai Y, Lu M. 2017. Characterization of BiP genes from pepper (Capsicum annuum L.) and the role of CaBiP1 in response to endoplasmic reticulum and multiple abiotic stresses. Frontiers in Plant Science 8:1122

doi: 10.3389/fpls.2017.01122
[46]

Coutinho FS, Dos Santos DS, Lima LL, Vital CE, Santos LA, et al. 2019. Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. Physiology and Molecular Biology of Plants 25:457−72

doi: 10.1007/s12298-019-00643-x
[47]

Xiang Y, Sun X, Gao S, Qin F, Dai M. 2017. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Molecular Plant 10:456−69

doi: 10.1016/j.molp.2016.10.003
[48]

Zhang H, Lu L. 2024. Transcription factors involved in plant responses to cadmium-induced oxidative stress. Frontiers in Plant Science 15:1397289

doi: 10.3389/fpls.2024.1397289
[49]

Lu Z, Yu M, Han X, Qiao G, Xu J, et al. 2024. SpbZIP60 confers cadmium tolerance by strengthening the root cell wall compartmentalization in Sedum plumbizincicola. Journal of Hazardous Materials 480:135936

doi: 10.1016/j.jhazmat.2024.135936
[50]

Lilay GH, Persson DP, Castro PH, Liao F, Alexander RD, et al. 2021. Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nature Plants 7:137−43

doi: 10.1038/s41477-021-00856-7
[51]

Spielmann J, Schloesser M, Hanikenne M. 2024. Reduced expression of bZIP19 and bZIP23 increases zinc and cadmium accumulation in Arabidopsis halleri. Plant, Cell & Environment 47:2093−108

doi: 10.1111/pce.14862
[52]

Zavaliev R, Dong X. 2024. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell 84:131−41

doi: 10.1016/j.molcel.2023.11.018
[53]

Zhang Y, Tessaro MJ, Lassner M, Li X. 2003. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. The Plant Cell 15:2647−53

doi: 10.1105/tpc.014894
[54]

Wang F, Lin R, Li Y, Wang P, Feng J, et al. 2019. TabZIP74 acts as a positive regulator in wheat stripe rust resistance and involves root development by mRNA splicing. Frontiers in Plant Science 10:1551

doi: 10.3389/fpls.2019.01551
[55]

Meng XB, Zhao WS, Lin RM, Wang M, Peng YL. 2005. Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Molecular Biology Reporter 23:301−2

doi: 10.1007/BF02772762
[56]

Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, et al. 2006. bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO Journal 25:4400−11

doi: 10.1038/sj.emboj.7601312
[57]

Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S. 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. The Plant Journal 53:935−49

doi: 10.1111/j.1365-313X.2007.03385.x
[58]

Paudel J, Copley T, Amirizian A, Prado A, Bede JC. 2013. Arabidopsis redox status in response to caterpillar herbivory. Frontiers in Plant Science 4:113

doi: 10.3389/fpls.2013.00113
[59]

Hickman R, Van Verk MC, Van Dijken AJH, Mendes MP, Vroegop-Vos IA, et al. 2017. Architecture and dynamics of the jasmonic acid gene regulatory network. The Plant Cell 29:2086−105

doi: 10.1105/tpc.16.00958
[60]

Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, et al. 2025. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Frontiers in Genome Editing 6:1488024

doi: 10.3389/fgeed.2024.1488024
[61]

Kang SG, Price J, Lin PC, Hong JC, Jang JC. 2010. The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Molecular Plant 3:361−73

doi: 10.1093/mp/ssp115
[62]

Thalor SK, Berberich T, Lee SS, Yang SH, Zhu X, et al. 2012. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One 7:e33111

doi: 10.1371/journal.pone.0033111
[63]

Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, et al. 2015. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. elife 4:e05828

doi: 10.7554/eLife.05828
[64]

Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, et al. 2015. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. The Plant Cell 27:2244−60

doi: 10.1105/tpc.15.00163
[65]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[66]

Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, et al. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany 67:3509−22

doi: 10.1093/jxb/erw181
[67]

Ni X, Wang Y, Dai L, Jiang K, Zeng S, et al. 2025. The transcription factor GmbZIP131 enhances soybean salt tolerance by regulating flavonoid biosynthesis. Plant Physiology 197:kiaf092

doi: 10.1093/plphys/kiaf092
[68]

Tu M, Fang J, Zhao R, Liu X, Yin W, et al. 2022. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Horticulture Research 9:uhac022

doi: 10.1093/hr/uhac022
[69]

Tang W, Page M. 2013. Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells. Molecular Biology Reports 40:2723−32

doi: 10.1007/s11033-012-2362-9
[70]

Liu Q, Luo L, Zheng L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19:335

doi: 10.3390/ijms19020335
[71]

Tu M, Wang X, Yin W, Wang Y, Li Y, et al. 2020. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. Horticulture Research 7:150

doi: 10.1038/s41438-020-00372-3
[72]

Wang Y, Salasini BC, Khan M, Devi B, Bush M, et al. 2019. Clade I TGACG-motif binding basic leucine zipper transcription factors mediate BLADE-ON-PETIOLE-dependent regulation of development. Plant Physiology 180:937−51

doi: 10.1104/pp.18.00805
[73]

Li S, Devi B, Allam G, Bhullar A, Murmu J, et al. 2023. Regulation of secondary growth by poplar BLADE-ON-PETIOLE genes in Arabidopsis. Frontiers in Plant Science 14:1244583

doi: 10.3389/fpls.2023.1244583
[74]

Gao Z, Sun Y, Zhu Z, Ni N, Sun S, et al. 2024. Transcription factors LvBBX24 and LvbZIP44 coordinated anthocyanin accumulation in response to light in lily petals. Horticulture Research 11:uhae211

doi: 10.1093/hr/uhae211
[75]

He Y, Wu Q, Cui C, Tian Q, Zhang D, et al. 2023. ChIP-seq analysis of SlAREB1 downstream regulatory network during tomato ripening. Foods 12:2357

doi: 10.3390/foods12122357
[76]

Ali Z, Sun Y, Ma Z, Zheng Y, Liu Y. 2025. VvHY5 and VvBEE1 antagonistically control resveratrol biosynthesis to mitigate high light-induced damage in grapevine. Journal of Integrative Plant Biology 67:993−1008

doi: 10.1111/jipb.13895
[77]

Zhang H, Liu J, Zhao Y, Wang E, Zhou J, et al. 2025. Comprehensive metabolomics and transcriptomics analysis reveal the regulatory mechanism of StHY5 on anthocyanin accumulation in potato tubers. Plant Science 356:112500

doi: 10.1016/j.plantsci.2025.112500
[78]

Zhao K, Chen S, Yao W, Cheng Z, Zhou B, et al. 2021. Genome-wide analysis and expression profile of the bZIP gene family in poplar. BMC Plant Biology 21:122

doi: 10.1186/s12870-021-02879-w
[79]

Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, et al. 2009. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. The Plant Cell 21:1747−61

doi: 10.1105/tpc.108.062968
[80]

Ali F, Qanmber G, Li F, Wang Z. 2022. Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35:199−214

doi: 10.1016/j.jare.2021.03.011
[81]

Kim I, Lee KR, Park ME, Kim HU. 2022. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. Plant Direct 6:e395

doi: 10.1002/pld3.395
[82]

Zhang Y, Li C, Zhang J, Wang J, Yang J, et al. 2017. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One 12:e0180449

doi: 10.1371/journal.pone.0180449
[83]

Lee J, He K, Stolc V, Lee H, Figueroa P, et al. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell 19:731−49

doi: 10.1105/tpc.106.047688
[84]

Maxwell BB, Andersson CR, Poole DS, Kay SA, Chory J. 2003. HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression. Plant Physiology 133:1565−77

doi: 10.1104/pp.103.025114
[85]

Jing Y, Guo Q, Lin R. 2021. The SNL-HDA19 histone deacetylase complex antagonizes HY5 activity to repress photomorphogenesis in Arabidopsis. New Phytologist 229:3221−36

doi: 10.1111/nph.17114
[86]

Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N. 1998. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. The Plant Cell 10:673−83

doi: 10.1105/tpc.10.5.673
[87]

Huang Y, Xiong H, Xie Y, Lyu S, Miao T, et al. 2022. BBX24 interacts with DELLA to regulate UV-B-induced photomorphogenesis in Arabidopsis thaliana. International Journal of Molecular Sciences 23:7386

doi: 10.3390/ijms23137386
[88]

Osterlund MT, Hardtke CS, Wei N, Deng XW. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462−66

doi: 10.1038/35013076
[89]

Jiang L, Wang Y, Li QF, Björn LO, He JX, et al. 2012. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Research 22:1046−57

doi: 10.1038/cr.2012.34
[90]

Jang IC, Henriques R, Chua NH. 2013. Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A. Plant & Cell Physiology 54:907−16

doi: 10.1093/pcp/pct042
[91]

Li J, Li G, Gao S, Martinez C, He G, et al. 2010. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome a signaling. The Plant Cell 22:3634−49

doi: 10.1105/tpc.110.075788
[92]

Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, et al. 2013. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. The Plant Cell 25:1243−57

doi: 10.1105/tpc.113.109751
[93]

Collani S, Neumann M, Yant L, Schmid M. 2019. FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. Plant Physiology 180:367−80

doi: 10.1104/pp.18.01505
[94]

Gutsche N, Zachgo S. 2016. The N-terminus of the floral Arabidopsis TGA transcription factor PERIANTHIA mediates redox-sensitive DNA-binding. PLoS One 11:e0153810

doi: 10.1371/journal.pone.0153810
[95]

Murmu J, Bush MJ, DeLong C, Li S, Xu M, et al. 2010. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology 154:1492−504

doi: 10.1104/pp.110.159111
[96]

Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, et al. 2016. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany 67:5825−40

doi: 10.1093/jxb/erw347
[97]

Liu Y, Tang L, Wang Y, Zhang L, Xu S, et al. 2023. The blue light signal transduction module FaCRY1-FaCOP1-FaHY5 regulates anthocyanin accumulation in cultivated strawberry. Frontiers in Plant Science 14:1144273

doi: 10.3389/fpls.2023.1144273
[98]

Cao J, Liu H, Tan S, Li Z. 2023. Transcription factors-regulated leaf senescence: current knowledge, challenges and approaches. International Journal of Molecular Sciences 24:9245

doi: 10.3390/ijms24119245
[99]

Guo Z, Dzinyela R, Yang L, Hwarari D. 2024. bZIP transcription factors: structure, modification, abiotic stress responses and application in plant improvement. Plants 13:2058

doi: 10.3390/plants13152058
[100]

Liu S, Wang Q, Zhong M, Lin G, Ye M, et al. 2025. The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance. Plant Communications 6:101264

doi: 10.1016/j.xplc.2025.101264