[1]

Ma F. 2023. Reflections on the development of China's apple industry − current situation, problems and solutions. Deciduous Fruits 55:1−4 (in Chinese)

doi: 10.13855/j.cnki.lygs.2023.04.001
[2]

Gao Y, Wang D, Wang K, Cong P, Li L, et al. 2020. Analysis of genetic diversity of apple germplasms of Malus using SLAF-seq technology. Acta Horticulturae Sinica 47:1869−82 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-1011
[3]

Slováčková B, Mišíková O. 2023. Observing the structure diversity of historic heirloom apple tree (Malus domestica Borkh.) wood in central Slovakia. Diversity 15:15

doi: 10.3390/D15010015
[4]

Alabd A, Ni J, Bai S, Teng Y. 2024. Transcriptional co-regulation of anthocyanin accumulation and acidity in fruits. Fruit Research 4:e005

doi: 10.48130/frures-0023-0041
[5]

Davies T, Myles S. 2023. Pool-seq of diverse apple germplasm reveals candidate loci underlying ripening time, phenolic content, and softening. Fruit Research 3:11

doi: 10.48130/FruRes-2023-0011
[6]

Nezbedova L, McGhie T, Christensen M, Heyes J, Nasef NA, et al. 2021. Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients 13:4025

doi: 10.3390/nu13114025
[7]

Chandimali N, Bak GS, Park HE, Lim HJ, Won YS, et al. 2025. Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery 11:19

doi: 10.1038/S41420-024-02278-8
[8]

Yuri JA, Neira A, Fuentes M, Sáez B, Razmilic I. 2022. Have the flowers, fruitlets, ripe fruit and leaves of apples cultivars similar compositions of phenolic and antioxidant capacity? Erwerbs-Obstbau 64:201−9

doi: 10.1007/S10341-022-00638-1
[9]

Liao L, Zhang W, Zhang B, Fang T, Wang XF, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14:1454−71

doi: 10.1016/J.MOLP.2021.05.018
[10]

Wang G, Lu X, Gao Y, Sun S, Wang L, et al. 2024. Detection and analysis of polyphenol components and content in 27 Malus germplasms from Xinjiang. China Fruits 7:58−66 (in Chiinese)

doi: 10.16626/j.cnki.issn1000-8047.2024.07.008
[11]

Song Y, Yao YX, Zhai H, Du YP, Chen F, et al. 2007. Polyphenolic compound and the degree of browning in processing apple varieties. Agricultural Sciences in China 6:607−12

doi: 10.1016/S1671-2927(07)60089-3
[12]

Kaeswurm JAH, Sempio R, Manca F, Burandt MR, Buchweitz M. 2023. Analyzing bioaccessibility of polyphenols in six commercial and six traditional apples (Malus domestica Borkh.) during in vitro and ex vivo oral digestion. Molecular Nutrition & Food Research 67:e2300055

doi: 10.1002/mnfr.202300055
[13]

Liu Y, Wang H, Jia Y, Zhang X, Zhu L. 2023. Assay on sugars, acid and polyphenols of Red Fuji apple in Chinese main production area and models of reginal authenticate. Science and Technology of Food Industry 44:285−93 (in Chinese)

doi: 10.13386/j.issn1002-0306.2023030245
[14]

Wang D, Wang G, Lu X, Liu Z, Sun S, et al. 2024. Dynamic changes in polyphenols in fruit development of red flesh apple 'Hongxun 2'. Horticulturae 10:1125

doi: 10.3390/horticulturae10111125
[15]

Renard CMGC, Dupont N, Guillermin P. 2007. Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68:1128−38

doi: 10.1016/j.phytochem.2007.02.012
[16]

Zhao J, Liu G, Chang R, Cao K, Shen F, et al. 2015. Diversity of flesh polyphenols and their progressive dilution during fruit expansion in Malus germplasm. Scientia Horticulturae 197:461−69

doi: 10.1016/j.scienta.2015.10.003
[17]

Wang N, Jiang S, Zhang Z, Fang H, Xu H, et al. 2018. Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Horticulture Research 5:70

doi: 10.1038/S41438-018-0084-4
[18]

Li W, Zhao J, Wang S, Yu W, Li L, et al. 2021. Polyphenolic components and composition differences of fruit polyphenols in apple landraces grown in cold regions. Molecular Plant Breeding 19:7265−73 (in Chinese)

doi: 10.13271/j.mpb.019.007265
[19]

Kim K, Park M, Kwon D, Wang Y, Sung J. 2025. Antioxidant and flavor properties of different apple cultivars grown in Korea. Food Chemistry: X 32:103263

doi: 10.1016/j.fochx.2025.103263
[20]

Li Q, Gao Y, Wang K, Sun S, Lu X, et al. 2022. Effects of different dwarfing interstocks on the total phenols and polyphenol components in Huahong apple. Journal of Fruit Science 39:1191−202 (in Chinese)

doi: 10.13925/j.cnki.gsxb.20210612
[21]

Yang Q, Li C, Wang Y, Pei X, Wang A, et al. 2025. Transcriptome and metabolome analyses of flavonoid biosynthesis during berry development of muscadine grape (Vitis rotundifolia Michx). Plants 14:2025

doi: 10.3390/PLANTS14132025
[22]

Zheng Y, Jiang Y, Yang X, Fu Z, Zhao Z, et al. 2024. Automatic periodical negative air ions reduce postharvest decay and maintain texture and flavor quality of 'Fuji' apple during long-term cold storage. Food Chemistry: X 24:101972

doi: 10.1016/j.fochx.2024.101972
[23]

Krishna Kumar S, Tyagi K, Brown M, Cheng L, Fei Z, et al. 2025. Reduced apple crop density enhances total polyphenol accumulation via upregulation of anthocyanidin reductase and other phenylpropanoid pathway genes. Frontiers in Plant Science 16:1591292

doi: 10.3389/FPLS.2025.1591292
[24]

Dong Z, Song S, Song C, Zheng X, Jiao J, et al. 2020. Pedigree analysis and breeding inspiration of apple cultivars in China. Scientia Agruicultura Sinica 53:4485−96 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.21.016
[25]

Lu X, Gao Y, Wang K, Sun S, Li L, et al. 2022. Analysis of aroma characteristics in different cultivated apple strains. Scientia Agricultura Sinica 55:543−57 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.03.010
[26]

Xin P, Xiang F, Chen X, Shen X, Lin S. 1998. Classification of and relation for the native, introduced and bred apple cultivars in China. Journal of Shandong Agricultural University 29:57−68 (in Chinese)

[27]

Lu Q, Jia D. 1999. Chinese Fruit Tree Record · Apple Roll. Beijing: China Agricultural Science and Technology Press; China Forestry Press. (in Chinese)

[28]

Li J, Nie JY, Cao YF, Li ZX, Yan Z, et al. 2016. UPLC-PDA-MS/MS-ESI analysis of phenolic compounds in fruits of dangshan suli and qiubaili pears (Pyrus bretschneideri). Acta Horticulturae Sinica 43:752−62 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2015-0713
[29]

Marks SC, Mullen W, Crozier A. 2007. Flavonoid and hydroxycinnamate profiles of English apple ciders. Journal of Agruicultural and Food Chemistry 55:8723−30

doi: 10.1021/JF071155U
[30]

Ramirez-Ambrosi M, Abad-Garcia B, Viloria-Bernal M, Garmon-Lobato S, Berrueta LA, et al. 2013. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. Journal of Chromatography A 1316:78−91

doi: 10.1016/j.chroma.2013.09.075
[31]

Montero L, Herrero M, Ibáñez E, Cifuentes A. 2013. Profiling of phenolic compounds from different apple varieties using comprehensive two-dimensional liquid chromatography. Journal of Chromatography A 1313:275−83

doi: 10.1016/j.chroma.2013.06.015
[32]

Ling G. 2000. Polyphenols are called 'seventh Nutrients'. China Food Additives 1:28−37 (in Chinese)

[33]

Bondonno CP, Bondonno NP, Shinde S, Shafaei A, Boyce MC, et al. 2020. Phenolic composition of 91 Australian apple varieties: towards understanding their health attributes. Food & Function 11:7115−25

doi: 10.1039/d0fo01130d
[34]

Xu HF, Wang N, Jiang SH, Wang YC, Liu JX, et al. 2016. Content and analysis of biosynthesis-related genes of flavonoid among four strains of Malus sieversii f. neidzwetzkyana F1 population. Scientia Agricultura Sinica 49:3174−87 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.16.011
[35]

Song J, Jeong J, Kim EH, Hong YS. 2023. A strategy for healthy eating habits of daily fruits revisited: a metabolomics study. Current Research in Food Science 6:100440

doi: 10.1016/j.crfs.2023.100440
[36]

Suleria HAR, Barrow CJ, Dunshea FR. 2020. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 9:1206

doi: 10.3390/foods9091206
[37]

Hu P, Wang J, Wang T. 2022. Ultrasound-microwave synergistic extraction of proanthocyanidins from wild cherry berry and antioxidant activity of simulated digestion in vitro. China Food Additives 33:27−36 (in Chinese)

doi: 10.19804/j.issn1006-2513.2022.02.004
[38]

Li Z, Gao C, Fan T, Cui Y, Liu Z, et al. 2025. Integrative analysis of genome-wide association studies of polyphenols in apple fruits identifies the MdDof2.4-MdPAT10 module that promotes procyanidin accumulation. Horticulture Research 12:uhae349

doi: 10.1093/hr/uhae349
[39]

Wang D, Wang K, Li J, Gao Y, Zhao J, et al. 2017. Study of characteristics on polyphenol in fruit of 20 wild Malus germplasm. China Fruits 4:74−78 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2017.04.025
[40]

Wang D, Wang K, Li J, Gao Y, Zhao J, et al. 2018. Variation and correlation analysis of polyphenolic compounds in Malus germplasm. The Journal of Horticultural Science and Biotechnology 93:26−36

doi: 10.1080/14620316.2017.1338925
[41]

Ikegaya A, Toyoizumi T, Ohba S, Nakajima T, Kawata T, et al. 2019. Effects of distribution of sugars and organic acids on the taste of strawberries. Food Science & Nutrition 7:2419−26

doi: 10.1002/fsn3.1109
[42]

Li J, Qin R, Fang Y, Gao Y, Jiao Y, et al. 2025. PpMYB114 partially depends on PpMYB10 for the promotion of anthocyanin accumulation in pear. Journal of Integrative Agriculture 24:4630−42

doi: 10.1016/j.jia.2024.12.036
[43]

Matsubara K, Kasai S, Masuda T, Shoji T, Hayakawa F, et al. 2017. Estimation of subjective internal browning severity ratings for scanned images of Fuji apple. Food Science and Technology Research 23:545−49

doi: 10.3136/fstr.23.545
[44]

Tan J, de Bruijn WJC, van Zadelhoff A, Lin Z, Vincken JP. 2020. Browning of epicatechin (EC) and epigallocatechin (EGC) by auto-oxidation. Journal of Agricultural and Food Chemistry 68:13879−87

doi: 10.1021/acs.jafc.0c05716
[45]

Bouillon P, Belin E, Fanciullino AL, Hanteville S, Letekoma Y, et al. 2025. Internal browning detection in red-flesh apple (Malus domestica) using image analysis and acoustic signal-based detection. Fruit Research 5:e011

doi: 10.48130/frures-0025-0002
[46]

Nunes AR, Alves G, Falcão A, Lopes JA, Silva LR. 2025. Phenolic acids from fruit by-products as therapeutic agents for metabolic syndrome: a review. International journal of Molecular Sciences 26:3834

doi: 10.3390/IJMS26083834
[47]

Zou H, Li C, Wei X, Xiao Q, Tian X, et al. 2025. Expression of the polyphenol oxidase gene MdPPO7 is modulated by MdWRKY3 to regulate browning in sliced apple fruit. Plant Physiology 197:kiae614

doi: 10.1093/plphys/kiae614
[48]

Li W. 2020. Molecular mechanism of fruit skin coloration in apple (Malus domestica Borkh.) cv. 'Red Delicious' bud sport mutants. Doctoral thesis. Gansu Agricultural University, China. (in Chinese) doi: 10.27025/d.cnki.ggsnu.2020.000023

[49]

Wang Y. 2017. Analysis and comparision of Fuji bud mutation varieties and identification of Fuji bud mutation strains. Master thesis. Northwest A&F University, China. (in Chinese) https://kns.cnki.net/kcms2/article/abstract?v=VqE8_zhXCqUiYywfSl7JW2ka2TdftluUPW88qV_UI9R5Trs4288mhI2sV7_iObViWAAG3hhZtNBBDLvevGPLMO-tgEfhILJsshrbf7xe-GJ7mwXsWVxleUCusAom3UV1HWKAVDrCEPE_MpYJJnmepmEi5DDtTxFmNXkr0gdrDwmzQdAcyVNk5kbgxtRKb_oG&uniplatform=NZKPT&language=CHS

[50]

Chen X, Mao Z, Wang Z, Wang N, Zhang Z, et al. 2020. Continuous multigenerational sports selection and its mechanism reveals the mystery of 'Red Fuji' in China's apple industry. China Fruits 3:1−5+142 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2020.03.001
[51]

Li Y, Yan L, Zhang B, Yang S, Zhao Z. 2021. A study on sugar and organic acid components in different apple cultivars. Journal of Fruit Science 38:1877−89 (in Chinese)

doi: 10.13925/j.cnki.gsxb.20210209
[52]

Xing H, Wu J, Wang L. 2023. Advances in the metabolism and regulation of astringent substances in fruits. Journal of Fruit Science 40:1728−40 (in Chinese)

doi: 10.13925/j.cnki.gsxb.20220686