[1]

Hawksworth DL, Lücking R. 2017. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5:1−17

doi: 10.1128/microbiolspec.FUNK-0052-2016
[2]

Dighton, J. 2018. Fungi in Ecosystem Processes. 2nd Edition. Boca Raton, USA: CRC Press. 434 pp. doi: 10.1201/9781315371528

[3]

Adnan M, Islam W, Gang L, Chen HYH. 2022. Advanced research tools for fungal diversity and its impact on forest ecosystem. Environmental Science and Pollution Research 29:45044−62

doi: 10.1007/s11356-022-20317-8
[4]

Runnel K, Tedersoo L, Krah FS, Piepenbring M, Scheepens JF, et al. 2025. Toward harnessing biodiversity–ecosystem function relationships in fungi. Trends in Ecology & Evolution 40:180−90

doi: 10.1016/j.tree.2024.10.004
[5]

Cannon PF, Sutton BC. 2004. Microfungi on wood and plant debris. In Biodiversity of fungi: inventory and monitoring methods, eds. Mueller GM, Bills GF, Foster MS. Boston, MA: Elsevier Academic Press. pp. 217–39. doi: 10.1016/B978-012509551-8/50014-3

[6]

Aime MC, Brearley FQ. 2012. Tropical fungal diversity: closing the gap between species estimates and species discovery. Biodiversity and Conservation 21:2177−80

doi: 10.1007/s10531-012-0338-7
[7]

Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, et al. 2018. Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93:215−39

doi: 10.1007/s13225-018-0415-7
[8]

Biodiversity Secretariat. 2014. Sri Lanka's fifth national report to the Convention on Biological Diversity. Ministry of Environment and Renewable Energy. pp. 1−154 www.cbd.int/doc/world/lk/lk-nr-05-en.pdf (Accessed on 04-09-2025)

[9]

Perera SJ, Suranjanfernando RHS. 2024. Physiography, climate, and historical biogeography of Sri Lanka. In Biodiversity hotspot of the Western Ghats and Sri Lanka, eds. Bahadur B, Rajasekaran A. New York: Apple Academic Press. pp. 405−45 doi: 10.1201/9781003408758-23

[10]

Karunarathna SC, Udayanga D, Maharachchikumbura SN, Pilkington M, Manamgoda DS, et al. 2012. Current status of knowledge of Sri Lankan mycota. Current Research in Environmental & Applied Mycology, 2:18−29

doi: 10.5943/cream/2/1/2
[11]

Galappaththi MCA, Karunarathna SC, Nanayakkara CM, Stephenson SL, Dauner L, et al. 2024. Overview of Sri Lankan fungi and lichen research. In Biodiversity hotspot of the Western Ghats and Sri Lanka, ed. Pullaiah T. New York: Apple Academic Press. pp. 447−56 doi: 10.1201/9781003408758-24

[12]

Asfa F, Thambugala KM, Daranagama DA, de Silva NI, Liyanage KK, et al. 2025. New records of Neopestalotiopsis species associated with leaves of Annona muricata (Soursop) and Garcinia mangostana (Mangosteen) in the Western Province, Sri Lanka, and in vitro evaluation of selected biocontrol agents for their growth suppression. Studies in Fungi 10:e010

doi: 10.48130/sif-0025-0010
[13]

Weerasekara IT, Udayanga D, Manamgoda DS, Mapa MST, Sinniah GD, et al. 2024. Morphological and molecular reassessment of Pseudopestalotiopsis in the gray blight complex of tea with four new species from Sri Lanka. Mycological Progress 23:72

doi: 10.1007/s11557-024-02010-x
[14]

Wimalasena MK, Wijayawardene NN, Bamunuarachchige TC, Jayalal RGU, Bhat DJ, et al. 2024. Ongoing study reveals high aquatic fungal diversity; an untouched component in Sri Lankan biodiversity. Chiang Mai Journal of Science 51:1−31

doi: 10.12982/CMJS.2024.039
[15]

Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. 2023. Current insights in fungal importance—a comprehensive review. Microorganisms, 11:1384

doi: 10.3390/microorganisms11061384
[16]

Joshi S, Joshi SR. 2025. Geomycology: exploring fungal roles in elemental cycling. In Mineral transformation and bioremediation by geo-microbes, eds. Joshi SR, Verma P, Banerjee S. Singapore: Springer Nature Singapore. pp. 169−99 doi: 10.1007/978-981-96-3033-2_8

[17]

Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27:185−94

doi: 10.1016/j.biotechadv.2008.11.001
[18]

Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, et al. 2021. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108:1−215

doi: 10.1007/s13225-021-00474-w
[19]

Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S. 2010. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Diversity 41:89−99

doi: 10.1007/s13225-010-0024-6
[20]

Zhou J, Li X, Chen Y, Dai CC. 2017. De novo transcriptome assembly of Phomopsis liquidambari provides insights into genes associated with different lifestyles in rice (Oryza sativa L. ). Frontiers in Plant Science 8:121

doi: 10.3389/fpls.2017.00121
[21]

Hu Y, Wei GY, Wen JT, Chang LF, Chen YS, et al. 2024. Endophytic fungi: Tracing the evolutionary roots and exploring the diversity of plant-fungal symbioses. Current Research in Environmental & Applied Mycology 14:1−48

doi: 10.5943/cream/14/1/1
[22]

Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: collection, examination, isolation, sporulation, and preservation. Mycosphere 11:2678−754

doi: 10.5943/mycosphere/11/1/20
[23]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. Amsterdam: Elsevier. pp. 315−22 doi: 10.1016/b978-0-12-372180-8.50042-1

[24]

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46

doi: 10.1128/jb.172.8.4238-4246.1990
[25]

Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L, et al. 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055−73

doi: 10.3852/10-302
[26]

Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61:1323−30

doi: 10.1128/aem.61.4.1323-1330.1995
[27]

Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16:1799−808

doi: 10.1093/oxfordjournals.molbev.a026092
[28]

Thambugala KM, Daranagama DA, Phillips AJL, Bulgakov TS, Bhat DJ, et al. 2017. Microfungi on Tamarix. Fungal Diversity 82:239−306

doi: 10.1007/s13225-016-0371-z
[29]

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95−98

[30]

Htet ZH, Prematunga C, Mapook A, Jones EBG, Chethana KWT. 2023. Taxonomy and phylogeny of Paradictyoarthrinium salsipaludicola sp. Nov. (Paradictyoarthriniaceae, Pleosporales) from mangroves. Phytotaxa 620:283−92

doi: 10.11646/phytotaxa.620.4.4
[31]

Yu K, Zhang H, Cheng K, Jiang Y. 2025. Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China. MycoKeys 112:233−52

doi: 10.3897/mycokeys.112.135493
[32]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[33]

Nylander JAA. 2004. MrModeltest 2.0 (software). Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden

[34]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[35]

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the SC10 Workshop on Gateway Computing Environments (GCE10), New Orleans, LA, USA, 14 November, 2010. USA: IEEE. pp. 1−8 doi: 10.1109/gce.2010.5676129

[36]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539−42

doi: 10.1093/sysbio/sys029
[37]

Matsushima T. 1996. Matsushima Mycological Memoirs 9. Kobe, Japan: Matsushima Fungus Collection. pp. 1−30

[38]

Prabhugaonkar A, Bhat DJ. 2011. New record of Megacapitula villosa and Paradictyoarthrinium diffractum from India. Mycosphere 2:463−67

[39]

Liu JK, Hyde KD, Gareth Jones EB, Ariyawansa HA, Bhat DJ, et al. 2015. Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72:1−197

doi: 10.1007/s13225-015-0324-y
[40]

Tian WH, Jin Y, Liao YC, Faraj TK, Guo XY, et al. 2024. New and interesting pine-associated hyphomycetes from China. Journal of Fungi 10:546

doi: 10.3390/jof10080546
[41]

Balagamage D, Maharachchikumbura SSN, Amuhenage TB, Phukhamsakda C, Marin-Felix Y, et al. 2024. Paradictyoarthrinium diffractum, a new host record on Delonix regia in northern Thailand. Fungal Biotechnology 4:125−32

[42]

Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu JK, et al. 2017. Microfungi on Tectona grandis (teak) in northern Thailand. Fungal Diversity 82:107−82

doi: 10.1007/s13225-016-0368-7
[43]

Persoon CH. 1794. Neuer Versuch einer systematischen Eintheilung der Schwämme. In Neues Magazin Für Die Botanik, ed. Römer J. Zürich, Switzerland: Bey Ziegler und Söhne. pp. 63−137 www.e-rara.ch/zut/doi/10.3931/e-rara-37279

[44]

Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, et al. 2015. The Genera of Fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6:163−98

doi: 10.5598/imafungus.2015.06.01.11
[45]

Su XJ, Luo ZL, Jeewon R, Bhat DJ, Bao DF, et al. 2018. Morphology and multigene phylogeny reveal new genus and species of Torulaceae from freshwater habitats in northwestern Yunnan, China. Mycological Progress 17:531−45

doi: 10.1007/s11557-018-1388-3
[46]

Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, et al. 2021. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 111:1−335

doi: 10.1007/s13225-021-00489-3
[47]

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, et al. 2020. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100:5−277

doi: 10.1007/s13225-020-00439-5
[48]

Crane JL, Miller AN. 2016. Studies in genera similar to Torula: Bahusaganda, Bahusandhika, Pseudotorula, and Simmonsiella gen. nov. IMA Fungus 7:29−45

doi: 10.5598/imafungus.2016.07.01.03
[49]

Li XH, Phookamsak R, Sun FQ, Jiang HB, Xu JC, et al. 2024. Torula aquilariae sp. nov. (Torulaceae, Pleosporales), a new species associated with Aquilaria sinensis from Yunnan, China. Studies in Fungi 9:e020

doi: 10.48130/sif-0024-0019
[50]

Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, et al. 2019. Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96:1−242

doi: 10.1007/s13225-019-00429-2
[51]

Saccardo P. 1875. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum venetorum novis vel criticis, systemate carpologico dispositorum. Atti Della Società Veneziana-Trentina-Istriana Di. Scienze Naturali in Padova 4:77−100

[52]

Liu R, Li D, Zhang Z, Liu S, Liu X, et al. 2023. Morphological and phylogenetic analyses reveal two new species and a new record of Apiospora (Amphisphaeriales, Apiosporaceae) in China. MycoKeys 95:27−45

doi: 10.3897/mycokeys.95.96400
[53]

Crous PW, Groenewald JZ. 2013. A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133−54

doi: 10.5598/imafungus.2013.04.01.13
[54]

Pintos Á, Alvarado P. 2021. Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Systematics and Evolution 7:197−221

doi: 10.3114/fuse.2021.07.10
[55]

Pintos Á, Alvarado P. 2022. New studies on Apiospora (Amphisphaeriales, Apiosporaceae): epitypification of Sphaeria apiospora, proposal of Ap. marianiae sp. nov. and description of the asexual morph of Ap. sichuanensis. MycoKeys 92:63−78

doi: 10.3897/mycokeys.92.87593
[56]

Senanayake IC, Bhat JD, Cheewangkoon R, Xie N. 2020. Bambusicolous Arthrinium species in Guangdong Province, China. Frontiers in Microbiology 11:602773

doi: 10.3389/fmicb.2020.602773
[57]

Tian X, Karunarathna SC, Mapook A, Promputtha I, Xu J, et al. 2021. One new species and two new gost records of Apiospora from bamboo and maize in northern Thailand with thirteen new combinations. Life 11:1071

doi: 10.3390/life11101071
[58]

He SC, Hyde KD, Jayawardena RS, Thiyagaraja V, Wanasinghe DN, et al. 2025. Taxonomic contributions to pleosporales and kirschsteiniotheliales from the Xizang Autonomous Region, China. Mycology 1−38

doi: 10.1080/21501203.2025.2493072
[59]

Li JF, Phookamsak R, Jeewon R, Bhat DJ, Mapook A, et al. 2017. Molecular taxonomy and morphological characterization reveal new species and new host records of Torula species (Torulaceae, Pleosporales). Mycological Progress 16:447−61

doi: 10.1007/s11557-017-1292-2