[1]

Deng T, Du Q, Zhu Y, Queenborough SA. 2025. Environmental drivers of herbaceous plant diversity in the understory community of a warm-temperate forest. Plant Diversity 47:282−90

doi: 10.1016/j.pld.2025.01.003
[2]

Folk RA, Siniscalchi CM, Soltis DE. 2020. Angiosperms at the edge: Extremity, diversity, and phylogeny. Plant, Cell & Environment 43:2871−93

doi: 10.1111/pce.13887
[3]

Qian H, Jin Y, Ricklefs RE. 2017. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences of the United States of America 114:11452−57

doi: 10.1073/pnas.1703985114
[4]

Murphy SJ, Salpeter K, Comita LS. 2016. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology 97:2074−84

doi: 10.1890/15-1801.1
[5]

Xiang Y, Huang CH, Hu Y, Wen J, Li S, et al. 2017. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34:262−81

doi: 10.1093/molbev/msw242
[6]

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905

doi: 10.1104/pp.110.155119
[7]

Han X, Zhao Y, Chen Y, Xu J, Jiang C, et al. 2022. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research 2:9

doi: 10.48130/FR-2022-0009
[8]

Chen K, Guo Y, Song M, Liu L, Xue H, et al. 2020. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Horticulture Research 7:204

doi: 10.1038/s41438-020-00433-7
[9]

Tu M, Wang X, Yin W, Wang Y, Li Y, et al. 2020. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. Horticulture Research 7:150

doi: 10.1038/s41438-020-00372-3
[10]

Zhao Q. 2016. Lignification: flexibility, biosynthesis and regulation. Trends in Plant Science 21:713−21

doi: 10.1016/j.tplants.2016.04.006
[11]

Li YP, Su LY, Huang T, Liu H, Tan SS, et al. 2025. The telomere-to-telomere genome of Pucai (蒲菜) (Typha angustifolia L.): a distinctive semiaquatic vegetable with lignin and chlorophyll as quality characteristics. Horticulture Research 12:uhaf079

doi: 10.1093/hr/uhaf079
[12]

Tuskan GA, Muchero W, Tschaplinski TJ, Ragauskas AJ. 2019. Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Current Opinion in Biotechnology 56:250−57

doi: 10.1016/j.copbio.2019.02.017
[13]

Xiao P, Pfaff SA, Zhao W, Debnath D, Vojvodin CS, et al. 2025. Emergence of lignin-carbohydrate interactions during plant stem maturation visualized by solid-state NMR. Nature Communications 16:8010

doi: 10.1038/s41467-025-63512-0
[14]

Gusakova M, Khviyuzov S, Bogolitsyn K, et al. 2024. Changes in the content of the main components of wood during the life cycle of higher plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 94:727−32

doi: 10.1007/s40011-024-01597-1
[15]

Wang Y, Gui C, Wu J, Gao X, Huang T, et al. 2022. Spatio-temporal modification of lignin biosynthesis in plants: a promising strategy for lignocellulose improvement and lignin valorization. Frontiers in Bioengineering and Biotechnology 10:917459

doi: 10.3389/fbioe.2022.917459
[16]

Ali Shad M, Li X, Rao MJ, Luo Z, Li X, et al. 2024. Exploring lignin biosynthesis genes in rice: evolution, function, and expression. International Journal of Molecular Sciences 25:10001

doi: 10.3390/ijms251810001
[17]

Zhan W, Cui L, Song N, Liu X, Guo G, et al. 2025. Comprehensive analysis of cinnamoyl-CoA reductase (CCR) gene family in wheat: implications for lignin biosynthesis and stress responses. BMC Plant Biology 25:567

doi: 10.1186/s12870-025-06605-8
[18]

Lin SJ, Yang YZ, Teng RM, Liu H, Li H, et al. 2021. Identification and expression analysis of caffeoyl-coenzyme A O-methyltransferase family genes related to lignin biosynthesis in tea plant (Camellia sinensis). Protoplasma 258:115−27

doi: 10.1007/s00709-020-01555-4
[19]

Yin T, Xu R, Zhu L, Yang X, Zhang M, et al. 2024. Comparative analysis of the PAL gene family in nine citruses provides new insights into the stress resistance mechanism of Citrus species. BMC Genomics 25:1020

doi: 10.1186/s12864-024-10938-3
[20]

Wu P, Zhang R, Yu S, Fu J, Guo Z, et al. 2023. Genome-wide identification and expression analysis of the CAD gene family in walnut (Juglans regia L.). Biochemical Genetics 61:1065−85

doi: 10.1007/s10528-022-10303-7
[21]

Weng JK, Chapple C. 2010. The origin and evolution of lignin biosynthesis. New Phytologist 187:273−85

doi: 10.1111/j.1469-8137.2010.03327.x
[22]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-019-1832-y
[23]

Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2021. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516−18

doi: 10.1093/bioinformatics/btaa1022
[24]

Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2:100141

doi: 10.1016/j.xinn.2021.100141
[25]

Altschul S. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1006/jmbi.1990.9999
[26]

Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, et al. 2025. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Research 53:D444−D456

doi: 10.1093/nar/gkae1082
[27]

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 − approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

doi: 10.1371/journal.pone.0009490
[28]

Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, et al. 2024. JCVI: a versatile toolkit for comparative genomics analysis. iMeta 3:e211

doi: 10.1002/imt2.211
[29]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[30]

Zhang Z, Xiao J, Wu J, Zhang H, Liu G, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications 419:779−81

doi: 10.1016/j.bbrc.2012.02.101
[31]

Zhang Z. 2022. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genomics, Proteomics & Bioinformatics 20:536−40

doi: 10.1016/j.gpb.2021.12.002
[32]

Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Research 47:W5−W10

doi: 10.1093/nar/gkz342
[33]

Smith SA, Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715−16

doi: 10.1093/bioinformatics/btm619
[34]

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164−65

doi: 10.1093/bioinformatics/btr088
[35]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34

doi: 10.1093/molbev/msaa015
[36]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[37]

Vanholme R, De Meester B, Ralph J, Boerjan W. 2019. Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology 56:230−39

doi: 10.1016/j.copbio.2019.02.018
[38]

Guo ZH, Ma PF, Yang GQ, Hu JY, Liu YL, et al. 2019. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Molecular Plant 12:1353−65

doi: 10.1016/j.molp.2019.05.009
[39]

Badouin H, Velt A, Gindraud F, Flutre T, Dumas V, et al. 2020. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biology 21:223

doi: 10.1186/s13059-020-02131-y
[40]

Droc G, Martin G, Guignon V, Summo M, Sempéré G, et al. 2022. The banana genome hub: a community database for genomics in the Musaceae. Horticulture Research 9:uhac221

doi: 10.1093/hr/uhac221
[41]

Conant GC, Birchler JA, Pires JC. 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology 19:91−98

doi: 10.1016/j.pbi.2014.05.008
[42]

Liu S, Liu Y, Yang X, Tong C, Edwards D, et al. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5:3930

doi: 10.1038/ncomms4930
[43]

Zhang X, Wang Z, Zhong X, Fu W, Li Y, et al. 2024. Genome-wide identification of the Gossypium hirsutum CAD gene family and functional study of GhiCAD23 under drought stress. PeerJ 12:e18439

doi: 10.7717/peerj.18439
[44]

Liu Y, Wang Y, Pei J, Li Y, Sun H. 2021. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit. BMC Plant Biology 21:5

doi: 10.1186/s12870-020-02767-9
[45]

Ma C, Zhang H, Li J, Tao S, Qiao X, et al. 2017. Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Systematics and Evolution 303:71−90

doi: 10.1007/s00606-016-1353-z
[46]

Peracchi LM, Brew-Appiah RAT, Garland-Campbell K, Roalson EH, Sanguinet KA. 2024. Genome-wide characterization and expression analysis of the cinnamyl alcohol dehydrogenase gene family in Triticum aestivum. BMC Genomics 25:816

doi: 10.1186/s12864-024-10648-w
[47]

Liu Q, Luo L, Wang X, Shen Z, Zheng L. 2017. Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. International Journal of Molecular Sciences 18:209

doi: 10.3390/ijms18020209
[48]

Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. 2009. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181:783−95

doi: 10.1534/genetics.108.098996
[49]

Chen C, Chang J, Wang S, Lu J, Liu Y, et al. 2021. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma 258:881−89

doi: 10.1007/s00709-021-01607-3
[50]

Huang E, Tang J, Song S, Yan H, Yu X, et al. 2024. Caffeic acid O-methyltransferase from Ligusticum chuanxiong alleviates drought stress, and improves lignin and melatonin biosynthesis. Frontiers in Plant Science 15:1458296

doi: 10.3389/fpls.2024.1458296
[51]

Pham TH, Tian X, Zhao H, Li T, Lu L. 2024. Genome-wide characterization of COMT family and regulatory role of CsCOMT19 in melatonin synthesis in Camellia sinensis. BMC Plant Biology 24:51

doi: 10.1186/s12870-023-04702-0
[52]

Liu Y, Bian Z, Jiang S, Wang X, Jiao L, et al. 2025. Comparative genomic analysis of COMT family genes in three Vitis Species reveals evolutionary relationships and functional divergence. Plants 14:2079

doi: 10.3390/plants14132079
[53]

Eudes A, Pereira JH, Yogiswara S, Wang G, Teixeira Benites V, et al. 2016. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase to reduce lignin. Plant & Cell Physiology 57:568−79

doi: 10.1093/pcp/pcw016
[54]

Chen Y, Yi N, Yao SB, Zhuang J, Fu Z, et al. 2021. CsHCT-mediated lignin synthesis pathway involved in the response of tea plants to biotic and abiotic stresses. Journal of Agricultural and Food Chemistry 69:10069−81

doi: 10.1021/acs.jafc.1c02771
[55]

Rezagholi M, Rezapour Fard J, Darvishzadeh R. 2025. Selenium nanoparticles mitigates drought stress in E. purpurea by enhancing morpho-physiological characteristics and gene expression related to the phenylpropanoid pathway. Industrial Crops and Products 227:120833

doi: 10.1016/j.indcrop.2025.120833
[56]

Kriegshauser L, Knosp S, Grienenberger E, Tatsumi K, Gütle DD, et al. 2021. Function of the hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase is evolutionarily conserved in embryophytes. The Plant Cell 33:1472−91

doi: 10.1093/plcell/koab044
[57]

Zheng K, Cai Y, Qu Y, Teng L, Wang C, et al. 2024. Effect of the HCT gene on lignin synthesis and fiber development in Gossypium barbadense. Plant Science 338:111914

doi: 10.1016/j.plantsci.2023.111914