[1]

Pillai ARS, Eapen AS, Zhang W, Roy S. 2024. Polysaccharide-based edible biopolymer-based coatings for fruit preservation: a review. Foods 13(10):1529

doi: 10.3390/foods13101529
[2]

Geyer R. 2020. Chapter 2 − production, use, and fate of synthetic polymers. In Plastic Waste and Recycling, ed. Letcher TM. Amsterdam, Netherlands: Elsevier. pp. 13−32 doi: 10.1016/B978-0-12-817880-5.00002-5

[3]

Roy S, Rhim JW. 2020. Curcumin incorporated poly (butylene adipate-co-terephthalate) film with improved water vapor barrier and antioxidant properties. Materials 13:4369

doi: 10.3390/ma13194369
[4]

Westlake JR, Tran MW, Jiang Y, Zhang X, Burrows AD, et al. 2023. Biodegradable biopolymers for active packaging: demand, development and directions. Sustainable Food Technology 1(1):50−72

doi: 10.1039/D2FB00004K
[5]

Khandeparkar AS, Paul R, Sridhar A, Lakshmaiah VV, Nagella P. 2024. Eco-friendly innovations in food packaging: a sustainable revolution. Sustainable Chemistry and Pharmacy 39:101579

doi: 10.1016/j.scp.2024.101579
[6]

Kokkuvayil Ramadas B, Rhim JW, Roy S. 2024. Recent progress of carrageenan-based composite films in active and intelligent food packaging applications. Polymers 16:1001

doi: 10.3390/polym16071001
[7]

Jayakody MM, Vanniarachchy MPG, Wijesekara I. 2022. Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: a review. Journal of Food Measurement and Characterization 16:1195−227

doi: 10.1007/s11694-021-01277-y
[8]

Perera KY, Sharma S, Pradhan D, Jaiswal AK, Jaiswal S. 2021. Seaweed polysaccharide in food contact materials (active packaging, intelligent packaging, edible films, and coatings). Foods 9:2088

doi: 10.3390/foods10092088
[9]

Abdullah NAS, Mohamad Z, Khan ZI, Jusoh M, Zakaria ZY, et al. 2021. Alginate based sustainable films and composites for packaging: a review. Chemical engineering transactions 83:271−76

doi: 10.3303/cet2183046
[10]

Metha C, Pawar S, Suvarna V. 2024. Recent advancements in alginate-based films for active food packaging applications. Sustainable Food Technology 2(5):1246−65

doi: 10.1039/D3FB00216K
[11]

Singh P, Baisthakur P, Yemul OS. 2020. Synthesis characterization and application of crosslinked alginate as green packaging material. Heliyon 6:e03026

doi: 10.1016/j.heliyon.2019.e03026
[12]

Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, et al. 2022. Structures, properties and applications of alginates. Marine Drugs 20(6):364

doi: 10.3390/md20060364
[13]

Roy S, Rhim JW. 2021. Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids and Surfaces B: Biointerfaces 207:111999

doi: 10.1016/j.colsurfb.2021.111999
[14]

Ali MS, Haq M, Roy VC, Ho TC, Park JS, et al. 2023. Development of fish gelatin/carrageenan/zein bio-nanocomposite active-films incorporated with turmeric essential oil and their application in chicken meat preservation. Colloids and Surfaces B: Biointerfaces 226:113320

doi: 10.1016/j.colsurfb.2023.113320
[15]

Lomartire S, Gonçalves AMM. 2022. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications. Marine Drugs 20(2):141

doi: 10.3390/md20020141
[16]

Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA. 2013. Microbial alginate production, modification and its applications. Microbial Biotechnology 6(6):637−50

doi: 10.1111/1751-7915.12076
[17]

Häder DP. 2021. Chapter 9 – phycocolloids from macroalgae. In Natural Bioactive Compounds: Technological Advancements, eds. Sinha RP, Häder DP. Amsterdam, Netherlands: Elsevier. pp. 187–201 doi: 10.1016/b978-0-12-820655-3.00009-4

[18]

Senturk Parreidt T, Müller K, Schmid M. 2018. Alginate-based edible films and coatings for food packaging applications. Foods 7(10):170

doi: 10.3390/foods7100170
[19]

Muhammadi, Shafiq S, Rizvi ZF. 2023. Promising substitute of inconsistent algal alginates: exploring the biocompatible properties of di-O-acetylated, poly-L-guluronate-deficient alginate from soil bacterium Pseudomonas aeruginosa CMG1418. BioTechnologia 104(2):137−55

doi: 10.5114/bta.2023.127204
[20]

Venkatesan J, Lowe B, Anil S, Manivasagan P, Al Kheraif AA, et al. 2015. Seaweed polysaccharides and their potential biomedical applications. Starch/Staerke 67(5−6):381−90

doi: 10.1002/star.201400127
[21]

Jadach B, Świetlik W, Froelich A. 2022. Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. Journal of Pharmaceutical Sciences 111(5):1250−61

doi: 10.1016/j.xphs.2021.12.024
[22]

Vargas M, Chiralt A, Albors A, González-Martínez C. 2009. Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology 51(2):263−71

doi: 10.1016/j.postharvbio.2008.07.019
[23]

Andrade RD, Skurtys O, Osorio FA. 2012. Atomizing spray systems for application of edible coatings. Comprehensive Reviews in Food Science and Food Safety 11(3):323−37

doi: 10.1111/j.1541-4337.2012.00186.x
[24]

Ksouda G, Sellimi S, Merlier F, Falcimaigne-cordin A, Thomasset B, et al. 2019. Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chemistry 288:47−56

doi: 10.1016/j.foodchem.2019.02.103
[25]

Amanatidou A, Slump RA, Gorris LGM, Smid EJ. 2000. High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots. Journal of Food Science 65(1):61−66

doi: 10.1111/j.1365-2621.2000.tb15956.x
[26]

Norton T, Sun DW. 2006. Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: a review. Trends in Food Science & Technology 17:600−20

doi: 10.1016/j.jpgs.2006.05.004
[27]

Weiss J, Takhistov P, McClements DJ. 2006. Functional materials in food nanotechnology. Journal of Food Science 71(9):R107−R116

doi: 10.1111/j.1750-3841.2006.00195.x
[28]

Frabetti ACC, de Moraes JO, Jury V, Boillereaux L, Laurindo JB. 2021. Adhesion of food on surfaces: theory, measurements, and main trends to reduce it prior to industrial drying. Food Engineering Reviews 13(4):884−901

doi: 10.1007/s12393-021-09286-9
[29]

Cisneros-Zevallos L, Krochta JM. 2003. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. Journal of Food Science 68(2):503−10

doi: 10.1111/j.1365-2621.2003.tb05702.x
[30]

Sipahi RE, Castell-Perez ME, Moreira RG, Gomes C, Castillo A. 2013. Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT - Food Science and Technology 51(1):9−15

doi: 10.1016/j.lwt.2012.11.013
[31]

Khatodiya N, Malik M. 2022. Review: effects of edible coating on fresh-cut fruits. Journal of Pharmacognosy and Phytochemistry 11(1):192−99

doi: 10.22271/phyto.2022.v11.i1c.14342
[32]

Guilbert S, Gontard N, Gorris LGM. 1996. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT − Food Science and Technology 29(1−2):10−17

doi: 10.1006/fstl.1996.0002
[33]

DDuan J, Wu R, Strik BC, Zhao Y. 2011. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology 59(1):71−79

doi: 10.1016/j.postharvbio.2010.08.006
[34]

Prakoso FAH, Indiarto R, Utama GL. 2023. Edible film casting techniques and materials and their utilization for meat-based product packaging. Polymers 15(13):2800

doi: 10.3390/polym15132800
[35]

Tufan EG, Borazan AA, Koçkar ÖM. 2021. A review on edible film and coating applications for fresh and dried fruits and vegetables. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi [Bilecik Sheikh Edebali University Journal of Science] 8:1073−85

doi: 10.35193/bseufbd.996827
[36]

Tharanathan RN. 2003. Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology 14(3):71−78

doi: 10.1016/S0924-2244(02)00280-7
[37]

Chettri S, Sharma N, Mohite AM. 2024. Formulation of extracted soyabean starch based edible coatings by different methods and their impact on shelf life of sapota fruit. Journal of the Saudi Society of Agricultural Sciences 23(3):205−11

doi: 10.1016/j.jssas.2023.11.003
[38]

Rajaei Lak H, Bazargani-Gilani B, Karami M. 2024. Different coating application methods: zein-based edible coating containing Heracleum persicum essential oil for shelf-life enhancement of whey-less cheese. Food Science & Nutrition 12(8):5990−6010

doi: 10.1002/fsn3.4269
[39]

Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. 2024. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Comprehensive Reviews in Food Science and Food Safety 23(1):e13275

doi: 10.1111/1541-4337.13275
[40]

Nimalan T, Begam MR. 2024. Physical and chemical methods: a review on the analysis of deposition parameters of thin film preparation methods. International Journal of Thin Film Science and Technology 13(1):59−66

doi: 10.18576/ijtfst/130107
[41]

Singaram AJV, Guruchandran S, Ganesan ND. 2024. Review on functionalized pectin films for active food packaging. Packaging Technology and Science 37(4):237−62

doi: 10.1002/pts.2793
[42]

Nehchiri N, Amiri S, Radi M. 2021. Improving the water barrier properties of alginate packaging films by submicron coating with drying linseed oil. Packaging Technology and Science 34(5):283−95

doi: 10.1002/pts.2558
[43]

Yang J, Fei T, Zhang W, Cong X. 2023. Tannic acid and Ca2+ double-crosslinked alginate films for passion fruit preservation. Foods 12(21):3936

doi: 10.3390/foods12213936
[44]

Hadi A, Nawab A, Alam F, Zehra K. 2021. Physical, mechanical, optical, barrier, and antioxidant properties of sodium alginate–aloe vera biocomposite film. Journal of Food Processing and Preservation 45(5):e15444

doi: 10.1111/jfpp.15444
[45]

Jost V, Kobsik K, Schmid M, Noller K. 2014. Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers 110:309−19

doi: 10.1016/j.carbpol.2014.03.096
[46]

Aloui H, Deshmukh AR, Khomlaem C, Kim BS. 2021. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocolloids 113:106508

doi: 10.1016/j.foodhyd.2020.106508
[47]

Dysjaland H, Sone I, Noriega Fernández E, Sivertsvik M, Sharmin N. 2022. Mechanical, barrier, antioxidant and antimicrobial properties of alginate films: effect of seaweed powder and plasma-activated water. Molecules 27(23):8356

doi: 10.3390/molecules27238356
[48]

Li N, Cheng Y, Li Z, Yue T, Yuan Y. 2024. An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.). International Journal of Biological Macromolecules 274:133273

doi: 10.1016/j.ijbiomac.2024.133273
[49]

Kannan A, Dheeptha M, Sistla YS. 2023. Development of Pectin and sodium alginate composite films with improved barrier and mechanical properties for food-packaging applications. Engineering Proceedings 37(1):80

doi: 10.3390/ecp2023-14668
[50]

Giménez MJ, Valverde JM, Valero D, Zapata PJ, Castillo S, et al. 2016. Postharvest methyl salicylate treatments delay ripening and maintain quality attributes and antioxidant compounds of 'Early Lory' sweet cherry. Postharvest Biology and Technology 117:102−9

doi: 10.1016/j.postharvbio.2016.02.006
[51]

Li L, Sun J, Gao H, Shen Y, Li C, Yi P, et al. 2017. Effects of polysaccharide-based edible coatings on quality and antioxidant enzyme system of strawberry during cold storage. International Journal of Polymer Science 2017:9746174

doi: 10.1155/2017/9746174
[52]

Peretto G, Du WX, Avena-Bustillos RJ, De J Berrios J, Sambo P, et al. 2017. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology 10(1):165−74

doi: 10.1007/s11947-016-1808-9
[53]

Song Y, Liu L, Shen H, You J, Luo Y. 2011. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22(3−4):608−15

doi: 10.1016/j.foodcont.2010.10.012
[54]

Galus S, Kadzińska J. 2015. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology 45(2):273−83

doi: 10.1016/j.jpgs.2015.07.011
[55]

Nussinovitch A. 2009. Hydrocolloids for coatings and adhesives. In Handbook of Hydrocolloids, eds. Phillips GO, Williams PA. Cambridge, UK: Woodhead Publishing. pp. 760−806 doi: 10.1533/9781845695873.760

[56]

Malektaj H, Drozdov AD, deClaville Christiansen J. 2023. Mechanical properties of alginate hydrogels cross-linked with multivalent cations. Polymers 15(14):3012

doi: 10.3390/polym15143012
[57]

Wang LF, Shankar S, Rhim JW. 2017. Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocolloids 63:201−8

doi: 10.1016/j.foodhyd.2016.08.041
[58]

Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Baldy-Chudzik K, Mazurek-Popczyk J, et al. 2022. Changes in the mechanical properties of alginate-gelatin hydrogels with the addition of Pygeum africanum with potential application in urology. International Journal of Molecular Sciences 23(18):10324

doi: 10.3390/ijms231810324
[59]

Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. 2022. Alginate-based bio-composites and their potential applications. Journal of Functional Biomaterials 13:117

doi: 10.3390/jfb13030117
[60]

Aydin G, Zorlu EB. 2022. Characterisation and antibacterial properties of novel biodegradable films based on alginate and roselle (Hibiscus sabdariffa L.) extract. Waste and Biomass Valorization 13:2991−3002

doi: 10.1007/s12649-022-01710-3
[61]

Such A, Wisła-Świder A, Węsierska E, Nowak E, Szatkowski P, et al. 2023. Edible chitosan-alginate based coatings enriched with turmeric and oregano additives: formulation, antimicrobial and non-cytotoxic properties. Food Chemistry 426:136662

doi: 10.1016/j.foodchem.2023.136662
[62]

Irianto HE, Marpaung DB, Ggiyatmi, Fransiska D, Basriman I. 2021. Anti-bacterial activity of alginate based edible coating solution added with lemongrass essential oil against some pathogenic bacteria. IOP Conference Series: Earth and Environmental Science 934:012023

doi: 10.1088/1755-1315/934/1/012023
[63]

Janik W, Nowotarski M, Ledniowska K, Shyntum DY, Krukiewicz K, et al. 2023. Modulation of physicochemical properties and antimicrobial activity of sodium alginate films through the use of chestnut extract and plasticizers. Scientific Reports 13:11530

doi: 10.1038/s41598-023-38794-3
[64]

Silva SPM, Ribeiro SC, Teixeira JA, Silva CCG. 2022. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 153:112486

doi: 10.1016/j.lwt.2021.112486
[65]

Lopes AI, Melo A, Caleja C, Pereira E, Finimundy TC, et al. 2023. Evaluation of antimicrobial and antioxidant activities of alginate edible coatings incorporated with plant extracts. Coatings 13(9):1487

doi: 10.3390/coatings13091487
[66]

Robles-Sánchez RM, Rojas-Graü MA, Odriozola-Serrano I, González-Aguilar G, Martin-Belloso O. 2013. Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT − Food Science and Technology 50(1):240−46

doi: 10.1016/j.lwt.2012.05.021
[67]

Moura-Alves M, Souza VGL, Silva JA, Esteves A, Pastrana LM, et al. 2023. Characterization of sodium alginate-based films blended with olive leaf and laurel leaf extracts obtained by ultrasound-assisted technology. Foods 12(22):4076

doi: 10.3390/foods12224076
[68]

Maksimova Dyankova S, Solak AO. 2023. Physical, mechanical, and antioxidant properties of alginate/pectin edible films with incorporated chokeberry and wild thyme extracts. Czech Journal of Food sciences 41(5):367−74

doi: 10.17221/94/2023-cjfs
[69]

Sun X, Zhang H, Wang J, Dong M, Jia P, et al. 2021. Sodium alginate-based nanocomposite films with strong antioxidant and antibacterial properties enhanced by polyphenol-rich kiwi peel extracts bio-reduced silver nanoparticles. Food Packaging and Shelf Life 29:100741

doi: 10.1016/j.fpsl.2021.100741
[70]

Rastegar S, Hassanzadeh Khankahdani H, Rahimzadeh M. 2019. Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. Journal of Food Biochemistry 43(11):e12990

doi: 10.1111/jfbc.12990
[71]

Wai Chun CN, Tajarudin HA, Ismail N, Azahari B, Mohd Zaini Makhtar M. 2021. Elucidation of mechanical, physical, chemical and thermal properties of microbial composite films by integrating sodium alginate with Bacillus subtilis sp. Polymers 13(13):2103

doi: 10.3390/polym13132103
[72]

Marangoni Júnior L, Jamróz E, de Ávila Gonçalves S, da Silva RG, Alves RMV, et al. 2022. Preparation and characterization of sodium alginate films with propolis extract and nano-SiO2. Food Hydrocolloids for Health 2:100094

doi: 10.1016/j.fhfh.2022.100094
[73]

Najafi Marghmaleki S, Mortazavi SMH, Saei H, Mostaan A. 2021. The effect of alginate-based edible coating enriched with citric acid and ascorbic acid on texture, appearance and eating quality of apple fresh-cut. International Journal of Fruit Science 21(1):40−51

doi: 10.1080/15538362.2020.1856018
[74]

Azarakhsh N, Osman A, Ghazali HM, Tan CP, Mohd Adzahan N. 2014. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology 88:1−7

doi: 10.1016/j.postharvbio.2013.09.004
[75]

Nair MS, Saxena A, Kaur C. 2018. Characterization and antifungal activity of pomegranate peel extract and its use in polysaccharide-based edible coatings to extend the shelf-life of capsicum (Capsicum annuum L.). Food Bioprocess Techology 11:1317−27

doi: 10.1007/s11947-018-2101-x
[76]

Artiga-Artigas M, Acevedo-Fani A, Martín-Belloso O. 2017. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76:1−12

doi: 10.1016/j.foodcont.2017.01.001
[77]

Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC. 2015. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biology and Technology 100:226−33

doi: 10.1016/j.postharvbio.2014.09.002
[78]

Alharaty G, Ramaswamy HS. 2020. The effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. Journal of Composites Science 4(3):123

doi: 10.3390/jcs4030123
[79]

Nazoori F, Poraziz S, Mirdehghan SH, Esmailizadeh M, ZamaniBahramabadi E. 2020. Improving shelf life of strawberry through application of sodium alginate and ascorbic acid coatings. International Journal of Horticultural Science and Technology 7(3):279−93

doi: 10.22059/IJHST.2020.297134.341
[80]

Hasan MM, Hossain MS, Islam MD, Rahman MM, Ratna AS, et al. 2023. Nontoxic cross-linked graphitic carbon nitride-alginate-based biodegradable transparent films for UV and high-energy blue light shielding. ACS Applied Materials & Interfaces 15(26):32011−23

doi: 10.1021/acsami.3c05659
[81]

Singh A, Singh N, Kaur N. 2024. Design, synthesis, and antimicrobial activity of biodegradable sodium alginate/COF polymeric films for smart monitoring of food spoilage and active food packaging. ACS Food Science & Technology 4(9):2233−43

doi: 10.1021/acsfoodscitech.4c00565
[82]

Konuk Takma D, Korel F. 2019. Active packaging films as a carrier of black cumin essential oil: development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life 19:210−17

doi: 10.1016/j.fpsl.2018.11.002
[83]

Shahbazi Y, Shavisi N. 2019. Effects of sodium alginate coating containing Mentha spicata essential oil and cellulose nanoparticles on extending the shelf life of raw silver carp (Hypophthalmichthys molitrix) fillets. Food Science and Biotechnology 28(2):433−40

doi: 10.1007/s10068-018-0486-y
[84]

Ranjbar M, Azizi Tabrizzad MH, Asadi G, Ahari H. 2023. Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon 9:e18879

doi: 10.1016/j.heliyon.2023.e18879
[85]

Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M. 2016. Efficacy of activated alginate-based nanocomposite films to control Listeria monocytogenes and spoilage flora in rainbow trout slice. Journal of Food Science and Technology 53:521−30

doi: 10.1007/s13197-015-2015-9
[86]

Raybaudi-Massilia RM, Rojas-Graü MA, Mosqueda-Melgar J, Martín-Belloso O. 2008. Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut fuji apples. Journal of Food Protection 71(6):1150−61

doi: 10.4315/0362-028X-71.6.1150
[87]

Jalali N, Ariiai P, Fattahi E. 2016. Effect of alginate/carboxyl methyl cellulose composite coating incorporated with clove essential oil on the quality of silver carp fillet and Escherichia coli O157:H7 inhibition during refrigerated storage. Journal of Food Science and Technology 53:757−65

doi: 10.1007/s13197-015-2060-4
[88]

Kapetanakou AE, Nestora S, Evageliou V, Skandamis PN. 2019. Sodium alginate–cinnamon essential oil coated apples and pears: Variability of Aspergillus carbonarius growth and ochratoxin A production. Food Research International 119:876−85

doi: 10.1016/j.foodres.2018.10.072
[89]

Abdel Aziz MS, Salama HE. 2021. Developing multifunctional edible coatings based on alginate for active food packaging. International Journal of Biological Macromolecules 190:837−44

doi: 10.1016/j.ijbiomac.2021.09.031
[90]

Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M. 2006. Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. Journal of Food Protection 69(10):2364−69

doi: 10.4315/0362-028X-69.10.2364
[91]

Tabassum N, Khan MA. 2020. Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: quality evaluation and shelf life study. Scientia Horticulture 259:108853

doi: 10.1016/j.scienta.2019.108853
[92]

Cheng M, Wang J, Zhang R, Kong R, Lu W, et al. 2019. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. International Journal of Biological Macromolecules 141:259−67

doi: 10.1016/j.ijbiomac.2019.08.215
[93]

Perez-Gago MB, Rojas C, Del Río MA. 2003. Effect of hydroxypropyl methylcellulose-lipid edible composite coatings on plum (cv. Autumn giant) quality during storage. Journal of Food Science 68(3):879−83

doi: 10.1111/j.1365-2621.2003.tb08260.x
[94]

Baldwin EA, Nisperos-Carriedo MO, Baker RA. 1995. Use of edible coatings to preserve quality of lightly (and slightly) processed products. Critical Reviews in Food Science and Nutrition 35(6):509−24

doi: 10.1080/10408399509527713
[95]

Li Y, Shan P, Yu F, Li H, Peng L. 2023. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. International Journal of Biological Macromolecules 230:123192

doi: 10.1016/j.ijbiomac.2023.123192
[96]

Lamani NA, Ramaswamy HS. 2023. Composite alginate–ginger oil edible coating for fresh-cut pears. Journal of Composites Science 7(6):245

doi: 10.3390/jcs7060245
[97]

Santos LG, Silva GFA, Gomes BM, Martins VG. 2021. A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatalysis and Agricultural Biotechnology 35:102096

doi: 10.1016/j.bcab.2021.102096
[98]

Guerreiro A, Gago C, Faleiro ML, Miguel G, Antunes MD. 2015. Alginate edible coatings enriched with citral for preservation of fresh and fresh-cut fruit. ISHS Acta Horticulturae 1091:37−44

doi: 10.17660/actahortic.2015.1091.3
[99]

Mao L, Zuo J, Liu Y, Zheng B, Dai X, et al. 2023. Alginate based films integrated with nitrogen-functionalized carbon dots and layered clay for active food packaging applications. International Journal of Biological Macromolecules 253:126653

doi: 10.1016/j.ijbiomac.2023.126653
[100]

López-Córdoba A, Aldana-Usme A. 2019. Edible coatings based on sodium alginate and ascorbic acid for application on fresh-cut pineapple (Ananas comosus (L.) merr). Agronomía Colombiana 37(3):317−22

doi: 10.15446/agron.colomb.v37n3.76173
[101]

Lazarus CR, West RL, Oblinger JL, Palmer AZ. 1976. Evaluation of a calcium alginate coating and a protective plastic wrapping for the control of lamb carcass shrinkage. Journal of Food Science 41(3):639−41

doi: 10.1111/j.1365-2621.1976.tb00689.x
[102]

Wanstedt KG, Seideman SC, Donnelly LS, Quenzer NM. 1981. Sensory attributes of precooked, calcium alginate-coated pork patties. Journal of Food Protection 44(10):732−55

doi: 10.4315/0362-028X-44.10.732
[103]

Guo Q, Yuan Y, He M, Zhang X, Li L, et al. 2023. Development of a multifunctional food packaging for meat products by incorporating carboxylated cellulose nanocrystal and beetroot extract into sodium alginate films. Food Chemistry 415:135799

doi: 10.1016/j.foodchem.2023.135799
[104]

Gheorghita R, Gutt G, Amariei S. 2020. The use of edible films based on sodium alginate in meat product packaging: an eco-friendly alternative to conventional plastic materials. Coatings 10(2):166

doi: 10.3390/coatings10020166
[105]

Zhong Y, Cavender G, Zhao Y. 2014. Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT − Food Science and Technology 56(1):1−8

doi: 10.1016/j.lwt.2013.11.006
[106]

Ammar M, Mohamed M. 2022. Influence of different formulations of alginate-based films in their antibacterial and antioxidant activity in meat slices. Assiut Veterinary Medical Journal 68:58−71

[107]

Rashid A, Qayum A, Shah Bacha SA, Liang Q, Liu Y, et al. 2024. Novel pullulan-sodium alginate film incorporated with anthocyanin-loaded casein-carboxy methyl cellulose nanocomplex for real-time fish and shrimp freshness monitoring. Food Hydrocolloids 156:110356

doi: 10.1016/j.foodhyd.2024.110356
[108]

Yu K, Yang L, Zhang S, Zhang N, Wang S, et al. 2024. Soy hull nanocellulose enhances the stretchability, transparency and ionic conductance of sodium alginate hydrogels and application in beef preservation. Food Hydrocolloids 152:109938

doi: 10.1016/j.foodhyd.2024.109938
[109]

Abdallah MR, Mohamed MA, Mohamed H, Emara MT. 2018. Application of alginate and gelatin-based edible coating materials as alternatives to traditional coating for improving the quality of pastirma. Food Science and Biotechnology 27:1589−97

doi: 10.1007/s10068-018-0393-2
[110]

El-Sayed SM, Youssef AM. 2024. Emergence of cheese packaging by edible coatings for enhancing its shelf-life. Journal of Food Measurement and Characterization 18(7):5265−80

doi: 10.1007/s11694-024-02564-0
[111]

Kavas N, Kavas G, Saygili D. 2016. Use of ginger essential oil-fortified edible coatings in Kashar cheese and its effects on Escherichia coli O157:H7 and Staphylococcus aureus. CyTA − Journal of Food 14(2):317−23

doi: 10.1080/19476337.2015.1109001
[112]

Abdin M, Mabrouk M, El-Sebaiy L, Eissa M, El-Bana M, et al. 2023. Composite films based on carboxy methyl cellulose and sodium alginate incorporated Thymus vulgaris purified leaves extract for food application: assessment, antimicrobial and antioxidant properties. International Journal of Biological Macromolecules 240:124474

doi: 10.1016/j.ijbiomac.2023.124474
[113]

Mahcene Z, Khelil A, Hasni S, Bozkurt F, Goudjil MB, et al. 2021. Home-made cheese preservation using sodium alginate based on edible film incorporating essential oils. Journal Food Science and Technology 58(6):2406−19

doi: 10.1007/s13197-020-04753-3
[114]

Giannakas AE, Zaharioudakis K, Kollia E, Kopsacheili A, Avdylaj L, et al. 2023. The development of a novel sodium alginate-based edible active hydrogel coating and its application on traditional greek spreadable cheese. Gels 9(10):807

doi: 10.3390/gels9100807
[115]

Eslami Z, Elkoun S, Robert M, Adjallé K. 2023. A review of the effect of plasticizers on the physical and mechanical properties of alginate-based films. Molecules 28(18):6637

doi: 10.3390/molecules28186637
[116]

Ding J, Huang D, Wang W, Lu Y, Dong W, et al. 2020. Significantly improve the water and chemicals resistance of alginate-based nanocomposite films by a simple in-situ surface coating approach. International Journal of Biological Macromolecules 156:1297−307

doi: 10.1016/j.ijbiomac.2019.11.168
[117]

Olivas GI, Barbosa-Cánovas GV. 2008. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT − Food Science and Technology 41(2):359−66

doi: 10.1016/j.lwt.2007.02.015
[118]

Kajla P, Chaudhary V, Dewan A, Bangar SP, Ramniwas S, et al. 2024. Seaweed-based biopolymers for food packaging: a sustainable approach for a cleaner tomorrow. International Journal of Biological Macromolecules 274:133166

doi: 10.1016/j.ijbiomac.2024.133166