[1]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889−892

doi: 10.1126/science.1136674
[2]

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7(3):737−750

doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
[3]

Naderian D, Noori R, Kim D, Jun C, Bateni SM, et al. 2025. Environmental controls on the conversion of nutrients to chlorophyll in lakes. Water Research 274:123094

doi: 10.1016/j.watres.2025.123094
[4]

Sheikholeslami R, Hall JW. 2023. Global patterns and key drivers of stream nitrogen concentration: a machine learning approach. Science of The Total Environment 868:161623

doi: 10.1016/j.scitotenv.2023.161623
[5]

Wang J, Bouwman AF, Vilmin L, Beusen AHW, van Hoek WJ, et al. 2024. Global inland-water nitrogen cycling has accelerated in the Anthropocene. Nature Water 2:729−740

doi: 10.1038/s44221-024-00282-x
[6]

Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, et al. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014−1015

doi: 10.1126/science.1167755
[7]

Yu C, Huang X, Chen H, Godfray HCJ, Wright JS, et al. 2019. Managing nitrogen to restore water quality in China. Nature 567:516−520

doi: 10.1038/s41586-019-1001-1
[8]

Zhao Z, Chen Y, Ye C, Wu J, Cai Z, et al. 2025. Linkage between nitrogen loss, river transport, lake accumulation and water quality properties in plain river network basin. Journal of Environmental Sciences 157:65−76

doi: 10.1016/j.jes.2024.12.022
[9]

Xu X, Zou Y, Pan H, Zhang R, Gu B. 2025. Safeguarding groundwater nitrate within regional boundaries in China. Environmental Science & Technology 59(1):467−477

doi: 10.1021/acs.est.4c08197
[10]

Deng D, Xu D, He G, Ding B, Liu W. 2025. Relative contributions of denitrification and anammox to nitrogen removal in riverine wetlands across China. Nitrogen Cycling 1:e003

doi: 10.48130/nc-0025-0004
[11]

Matiatos I, Monteiro LR, Sebilo M, Soto DX, Gooddy DC, et al. 2024. Isotopes reveal the moderating role of ammonium on global riverine water nitrogen cycling. ACS ES&T Water 4(4):1451−1459

doi: 10.1021/acsestwater.3c00605
[12]

Sadayappan K, Kerins D, Shen C, Li L. 2022. Nitrate concentrations predominantly driven by human, climate, and soil properties in US rivers. Water Research 226:119295

doi: 10.1016/j.watres.2022.119295
[13]

Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC. 2018. Contribution of wetlands to nitrate removal at the watershed scale. Nature Geoscience 11:127−132

doi: 10.1038/s41561-017-0056-6
[14]

Wang Y, Cai Z, Lang X, Yan X, Xu K. 2021. Nitrogen cascade in the agriculture-food-environment system of the Yangtze Delta, 1998–2018. Science of The Total Environment 787:147442

doi: 10.1016/j.scitotenv.2021.147442
[15]

Li W, Xu W, Yin G, Zhang X, Zhang Z, et al. 2023. Critical processes and major factors that drive nitrogen transport from farmland to surface water bodies. Frontiers of Agricultural Science and Engineering 10(4):541−552

doi: 10.15302/J-FASE-2023518
[16]

Yang X, Bol R, Xia L, Xu C, Yuan N, et al. 2024. Integrated farming optimization ensures high-yield crop production with decreased nitrogen leaching and improved soil fertility: the findings from a 12-year experimental study. Field Crops Research 318:109572

doi: 10.1016/j.fcr.2024.109572
[17]

Qi H, Liu Y. 2023. Nitrogen removal through denitrification in China's aquatic system. Science of The Total Environment 891:164317

doi: 10.1016/j.scitotenv.2023.164317
[18]

Ryu HD, Kim SJ, Baek UI, Kim DW, Lee HJ, et al. 2021. Identifying nitrogen sources in intensive livestock farming watershed with swine excreta treatment facility using dual ammonium (δ15NNH4) and nitrate (δ15NNO3) nitrogen isotope ratios axes. Science of the Total Environment 779:146480

doi: 10.1016/j.scitotenv.2021.146480
[19]

Wu H, Song F, Li J, Zhou Y, Zhang J, et al. 2022. Surface water isoscapes (δ18O and δ2H) reveal dual effects of damming and drought on the Yangtze River water cycles. Journal of Hydrology 610:127847

doi: 10.1016/j.jhydrol.2022.127847
[20]

Zhao Z, He X, Chen S, Ning L, Chen K, et al. 2025. Quantifying the environmental fate and source of nitrate contamination using dual-isotope tracing coupled with nitrogen cascade model on the basin scale. Journal of Hazardous Materials 482:136594

doi: 10.1016/j.jhazmat.2024.136594
[21]

Chen J, Liu X, Chen J, Jin H, Wang T, et al. 2024. Underestimated nutrient from aquaculture ponds to Lake Eutrophication: a case study on Taihu Lake Basin. Journal of Hydrology 630:130749

doi: 10.1016/j.jhydrol.2024.130749
[22]

Zhu Z, Wu D, Jiang Q. 2024. Chinese Freshwater aquaculture: a comparative analysis of the competitiveness on regional aquaculture industries. Aquaculture and Fisheries 9:860−870

doi: 10.1016/j.aaf.2022.11.001
[23]

Sarpong L, Li Y, Cheng Y, Nooni IK. 2023. Temporal characteristics and trends of nitrogen loadings in lake Taihu, China and its influencing mechanism at multiple timescales. Journal of Environmental Management 344:118406

doi: 10.1016/j.jenvman.2023.118406
[24]

Zhao Z, Zhang M, Chen Y, Ti C, Tian J, et al. 2022. Traceability of nitrate polluted hotspots in plain river networks of the Yangtze River delta by nitrogen and oxygen isotopes coupling bayesian model. Environmental Pollution 315:120438

doi: 10.1016/j.envpol.2022.120438
[25]

Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, et al. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096

doi: 10.7717/peerj.5096
[26]

Cai Z, Gu B, Ti C, Yan X, Ma L, et al. 2018. Guidelines for nitrogen flow analysis in China. China: Science Press (in Chinese)

[27]

Qin B, Zhang Y, Zhu G, Gao G. 2023. Eutrophication control of large shallow lakes in China. Science of The Total Environment 881:163494

doi: 10.1016/j.scitotenv.2023.163494
[28]

Chen F, Jia G, Chen J. 2009. Nitrate sources and watershed denitrification inferred from nitrate dual isotopes in the Beijiang River, South China. Biogeochemistry 94:163−174

doi: 10.1007/s10533-009-9316-x
[29]

Zhao J, Han Y, Liu J, Li B, Li J, et al. 2024. Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China. Science of The Total Environment 939:173610

doi: 10.1016/j.scitotenv.2024.173610
[30]

Spruill TB, Showers WJ, Howe SS. 2002. Application of classification-tree methods to identify nitrate sources in ground water. Journal of Environmental Quality 31(5):1538−1756

doi: 10.2134/jeq2002.1538
[31]

Kendall C, Elliott EM, Wankel SD. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology and Environmental Science, Second Edition, eds Michener R, Lajtha K. London: Blackwell Publishing. pp. 375–449 doi: 10.1002/9780470691854.ch12

[32]

Xuan Y, Liu G, Zhang Y, Cao Y. 2022. Factor affecting nitrate in a mixed land-use watershed of Southern China based on dual nitrate isotopes, sources or transformations? Journal of Hydrology 604:127220

doi: 10.1016/j.jhydrol.2021.127220
[33]

Pan Y, She D, Ding J, Abulaiti A, Zhao J, et al. 2024. Coping with groundwater pollution in high-nitrate leaching areas: the efficacy of denitrification. Environmental Research 250:118484

doi: 10.1016/j.envres.2024.118484
[34]

Ji X, Xie R, Hao Y, Lu J. 2017. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environmental Pollution 229:586−594

doi: 10.1016/j.envpol.2017.06.100
[35]

Torres-Martínez JA, Mora A, Mahlknecht J, Daesslé LW, Cervantes-Avilés PA, et al. 2021. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environmental Pollution 269:115445

doi: 10.1016/j.envpol.2020.115445
[36]

Yang G, Kang J, Wang Y, Zhao X, Wang S. 2024. Environmental transport of excess nitrogen fertilizer in peach orchard: evidence arising from 15N tracing trial. Agriculture Ecosystems & Environment 370:109066

doi: 10.1016/j.agee.2024.109066
[37]

Liu L, Xu W, Lu X, Zhong B, Guo Y, et al. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America 119(14):e2121998119

doi: 10.1073/pnas.2121998119
[38]

Hofmeier M, Roelcke M, Han Y, Lan T, Bergmann H, et al. 2015. Nitrogen management in a rice–wheat system in the Taihu Region: recommendations based on field experiments and surveys. Agriculture, Ecosystems & Environment 209:60−73

doi: 10.1016/j.agee.2015.03.032
[39]

Deng O, Ran J, Huang S, Duan J, Reis S, et al. 2024. Managing fragmented croplands for environmental and economic benefits in China. Nature Food 5:230−240

doi: 10.1038/s43016-024-00938-7
[40]

Duan J, Ren C, Wang S, Zhang X, Reis S, et al. 2021. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food 2:1014−1022

doi: 10.1038/s43016-022-00469-z
[41]

Qin B, Paerl HW, Brookes JD, Liu J, Jeppesen E, et al. 2019. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Science Bulletin 64(6):354−356

doi: 10.1016/j.scib.2019.02.008
[42]

Sun D, Wang X, Yu M, Ouyang Z, Liu G. 2023. Dynamic evolution and decoupling analysis of agricultural nonpoint source pollution in Taihu Lake Basin during the urbanization process. Environmental Impact Assessment Review 100:107048

doi: 10.1016/j.eiar.2023.107048
[43]

Yan X, Xia L, Ti C. 2022. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environmental Pollution 293:118496

doi: 10.1016/j.envpol.2021.118496
[44]

Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters 9:105011

doi: 10.1088/1748-9326/9/10/105011
[45]

Shi X, Luo X, Jiao JJ, Zuo J, Kuang X, et al. 2024. Lacustrine groundwater discharge-derived carbon and nitrogen to regulate biogeochemical processes as revealed by stable isotope signals in a large shallow eutrophic lake. Science of The Total Environment 953:176069

doi: 10.1016/j.scitotenv.2024.176069
[46]

Mooney RJ, Stanley EH, Rosenthal WC, Esselman PC, Kendall AD, et al. 2020. Outsized nutrient contributions from small tributaries to a Great Lake. Proceedings of the National Academy of Sciences of the United States of America 117(45):28175−28182

doi: 10.1073/pnas.2001376117
[47]

Yan X, Xia Y, Ti C, Shan J, Wu Y, et al. 2024. Thirty years of experience in water pollution control in Taihu Lake: a review. Science of The Total Environment 914:169821

doi: 10.1016/j.scitotenv.2023.169821
[48]

Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, et al. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability 1:441−446

doi: 10.1038/s41893-018-0114-0
[49]

Yang L, Shi W, Xue L, Song X, Wang S, et al. 2013. Reduce-retain-reuse-restore technology for the controlling the agricultural non-point source pollution in countryside in China: general countermeasures and technologies. Journal of Agro-Environment Science 32(1):1−8 (in Chinese)

[50]

Cui Z, Huang J, Gao J, Han J. 2022. Characterizing the impacts of macrophyte-dominated ponds on nitrogen sources and sinks by coupling multiscale models. Science of The Total Environment 811:152208

doi: 10.1016/j.scitotenv.2021.152208
[51]

Chen X, Jiang L, Huang X, Cai Z. 2021. Identifying nitrogen source and transport characteristics of the urban estuaries and gate-controlled rivers in northern Taihu Lake, China. Ecological Indicators 130:108035

doi: 10.1016/j.ecolind.2021.108035
[52]

Wu D, Chen F, Hu J, Ji G, Shi Y, et al. 2022. The declining cyanobacterial blooms in Lake Taihu (China) in 2021: the interplay of nutrients and meteorological determinants. Ecological Indicators 145:109590

doi: 10.1016/j.ecolind.2022.109590