[1]

Prabowo J, Lai L, Wang Y, Wu R, Chen Y. 2025. Sustainable carbon materials from methane pyrolysis for energy applications. Current Opinion in Green and Sustainable Chemistry 52:101004

doi: 10.1016/j.cogsc.2025.101004
[2]

Hegde SS, Bhat BR. 2024. Impact of electrolyte concentration on electrochemical performance of Cocos nucifera Waste-Derived High-Surface carbon for green energy storage. Fuel 371(A):131999

doi: 10.1016/j.fuel.2024.131999
[3]

Li X, Yu Y, Zhang Y, Wang J, She D. 2024. Synergistic effects of modified biochar and selenium on reducing heavy metal uptake and improving pakchoi growth in Cd, Pb, Cu, and Zn–contaminated soil. Journal of Environmental Chemical Engineering 12(4):113170

doi: 10.1016/j.jece.2024.113170
[4]

Yang H, Zhang B, Sun J, Su X, Huo S, et al. 2024. Efficient Fe3O4@porous carbon microwave absorber constructed from cotton cellulose nanofibers hydrogel. Journal of Alloys and Compounds 997:174956

doi: 10.1016/j.jallcom.2024.174956
[5]

Zhang Z, Kang J, Liu R, Sun Z, Feng L, et al. 2024. Microwave photonic mixing approach to doppler frequency shift measurement. IEEE Transactions on Instrumentation and Measurement 73:1008508

doi: 10.1109/TIM.2024.3462983
[6]

Sun Y, Chen Y, Tang L, Jia X, Ma H, et al. 2025. A submicrosecond-response ultrafast microwave ranging method based on optically generated frequency-modulated pulses. Sensors 25(1):58

doi: 10.3390/s25010058
[7]

Yu B, Wang HQ, Ju L, Hou KX, Xiao ZD, et al. 2025. A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks. National Science Review 12(2):nwae435

doi: 10.1093/nsr/nwae435
[8]

Gong C, Ding J, Wang C, Zhang Y, Guo Y, et al. 2023. Defect-induced dipole polarization engineering of electromagnetic wave absorbers: insights and perspectives. Composites Part B: Engineering 252:110479

doi: 10.1016/j.compositesb.2022.110479
[9]

Zhao B, Yan Z, Li D, Zhou X, Du Y, et al. 2023. Hierarchical flower-like sulfides with increased entropy for electromagnetic wave absorption. ACS Applied Materials & Interfaces 15(51):59618−29

doi: 10.1021/acsami.3c15017
[10]

Nagashima I, Sugiyama J, Shimizu H. 2023. Study of 400 MHz microwave conduction loss effect for a hydrolysis reaction by thermostable β-glucosidase HT1. Bioscience, Biotechnology, and Biochemistry 87(2):158−162

doi: 10.1093/bbb/zbac194
[11]

Duan L, Zhou J, Yan Y, Tao J, Liu Y, et al. 2025. Electron migratory polarization of interfacial electric fields facilitates efficient microwave absorption. Advanced Functional Materials 35(10):2416727

doi: 10.1002/adfm.202416727
[12]

Sun J, Huang X, Liu Y, Zhang K, Yan Y, et al. 2023. Enhanced microwave absorption performance originated from interface and unrivaled impedance matching of SiO2/carbon fiber. Applied Surface Science 623:157029

doi: 10.1016/j.apsusc.2023.157029
[13]

Tian W, Li Z, Wu L. 2020. Experimental demonstration of a microwave non-thermal effect in DMSO-NaCl aqueous solution. Chemical Physics 528:110523

doi: 10.1016/j.chemphys.2019.110523
[14]

Guo L, Lan J, Du Y, Zhang TC, Du D. 2020. Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts. Journal of Hazardous Materials 386:121964

doi: 10.1016/j.jhazmat.2019.121964
[15]

Zhang Y, Chen P, Liu S, Peng P, Min M, et al. 2017. Effects of feedstock characteristics on microwave-assisted pyrolysis – a review. Bioresource Technology 230:143−151

doi: 10.1016/j.biortech.2017.01.046
[16]

Qiu T, Liu C, Cui L, Liu H, Muhammad K, et al. 2023. Comparison of corn straw biochars from electrical pyrolysis and microwave pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45(1):636−649

doi: 10.1080/15567036.2023.2172484
[17]

Qiu T, Cao W, Xie K, Ahmad F, Zhao W, et al. 2025. CO2 capture performances of H3PO4/KOH activated microwave pyrolyzed porous biochar. Sustainable Carbon Materials 1:e004

doi: 10.48130/scm-0025-0004
[18]

Salakhi M, Thomson MJ. 2025. A particle-scale study showing microwave energy can effectively decarbonize process heat in fluidization industry. iScience 28(2):111732

doi: 10.1016/j.isci.2024.111732
[19]

Nilova LP, Ikramov RA, Malyutenkova SM, Chunin SA, Lu W, et al. 2020. High-speed infrared photography in the study of thermophysical processes in the manufacture of jelly products. IOP Conference Series: Materials Science and Engineering 940:012083

doi: 10.1088/1757-899X/940/1/012083
[20]

Zhang Y, Ke C, Fu W, Cui Y, Rehan MA, et al. 2020. Simulation of microwave-assisted gasification of biomass: a review. Renewable Energy 154:488−496

doi: 10.1016/j.renene.2020.03.056
[21]

Zhang Y, Luo H, Kong L, Zhao X, Miao G, et al. 2020. Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chemistry 22(21):7333−736

doi: 10.1039/d0gc02596h
[22]

Zhang Y, Liu S, Fan L, Zhou N, Omar MM, et al. 2018. Oil production from microwave-assisted pyrolysis of a low rank American brown coal. Energy Conversion and Management 159:76−84

doi: 10.1016/j.enconman.2018.01.004
[23]

Ellison C, Abdelsayed V, Smith MW. 2023. Analysis of char structure and composition from microwave and conventional pyrolysis/gasification of low and middle rank coals. Fuel 354:129301

doi: 10.1016/j.fuel.2023.129301
[24]

Zhang X, Ma X, Yu Z, Yi Y, Huang Z, et al. 2022. Preparation of high-value porous carbon by microwave treatment of chili straw pyrolysis residue. Bioresource Technology 360:127520

doi: 10.1016/j.biortech.2022.127520
[25]

Jankovská Z, Matějová L, Tokarský J, Peikertová P, Dopita M, et al. 2024. Microporous carbon prepared by microwave pyrolysis of scrap tyres and the effect of K+ in its structure on xylene adsorption. Carbon 216:118581

doi: 10.1016/j.carbon.2023.118581
[26]

Huang H, Chen Y, Ma R, Luo J, Sun S, et al. 2023. Preparation of high performance porous carbon by microwave synergistic nitrogen/phosphorus doping for efficient removal of Cu2+ via capacitive deionization. Environmental Research 222:115342

doi: 10.1016/j.envres.2023.115342
[27]

Fan YY, Cheng HM, Wei YL, Su G, Shen ZH. 2000. Tailoring the diameters of vapor-grown carbon nanofibers. Carbon 38(6):921−927

doi: 10.1016/S0008-6223(99)00207-9
[28]

Merkulov VI, Melechko AV, Guillorn MA, Lowndes DH, Simpson ML. 2002. Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Applied Physics Letters 80(3):476−478

doi: 10.1063/1.1433905
[29]

Kim HI, Wang M, Lee SK, Kang J, Nam JD, et al. 2017. Tensile properties of millimeter-long multi-walled carbon nanotubes. Scientific Reports 7:9512

doi: 10.1038/s41598-017-10279-0
[30]

Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, et al. 2016. Printed carbon nanotube electronics and sensor systems. Advanced Materials 28(22):4397−4414

doi: 10.1002/adma.201504958
[31]

Farrera C, Andón FT, Feliu N. 2017. Carbon nanotubes as optical sensors in biomedicine. ACS Nano 11(11):10637−10643

doi: 10.1021/acsnano.7b06701
[32]

Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, et al. 2002. Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A 74(3):339−343

doi: 10.1007/s003390201277
[33]

Zheng Q, Cao WQ, Zhai H, Cao MS. 2023. Tailoring carbon-based nanofiber microstructures for electromagnetic absorption, shielding, and devices. Materials Chemistry Frontiers 7(9):1737−1759

doi: 10.1039/d2qm01271e
[34]

Zhou X, Wang Y, Gong C, Liu B, Wei G. 2020. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chemical Engineering Journal 402:126189

doi: 10.1016/j.cej.2020.126189
[35]

Feng S, Li K, Hu P, Cai C, Liu J, et al. 2023. Solvent-free synthesis of hollow carbon nanostructures for efficient sodium storage. ACS Nano 17(22):23152−23159

doi: 10.1021/acsnano.3c09328
[36]

Zhang L, Zhang H, Liu K, Hou J, Badamdorj B, et al. 2023. In-situ synthesis of −P=N-doped carbon nanofibers for single-atom catalytic hydrosilylation. Advanced Materials 35(15):e2209310

doi: 10.1002/adma.202209310
[37]

Smolka W, Dlugon E, Jelen P, Niemiec W, Panek A, et al. 2019. Carbon nanofibers coated with silicon/calcium-based compounds for medical application. Journal of Nanomaterials 2019:7172641

doi: 10.1155/2019/7172641
[38]

Wang S, Zhao X, Yin X, Yu J, Ding B. 2016. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Applied Materials & Interfaces 8(36):23985−23994

doi: 10.1021/acsami.6b08262
[39]

Lavagna L, Bartoli M, Musso S, Suarez-Riera D, Tagliaferro A, et al. 2022. A first assessment of carbon nanotubes grown on oil-well cement via chemical vapor deposition. Nanomaterials 12(14):2346

doi: 10.3390/nano12142346
[40]

Ando Y, Zhao X, Sugai T, Kumar M. 2004. Growing carbon nanotubes. Materials Today 7(10):22−29

doi: 10.1016/S1369-7021(04)00446-8
[41]

Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, et al. 2015. Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Physica Status Solidi B 252(8):1860−1867

doi: 10.1002/pssb.201451614
[42]

Arenal R, Lopez-Bezanilla A. 2014. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation. ACS Nano 8(8):8419−8425

doi: 10.1021/nn502912w
[43]

Lin CC, Lin YW. 2015. Synthesis of carbon nanotube/graphene composites by one-step chemical vapor deposition for electrodes of electrochemical capacitors. Journal of Nanomaterials 2015:741928

doi: 10.1155/2015/741928
[44]

Liu Y, Guo N, Yin P, Zhang C. 2019. Facile growth of carbon nanotubes using microwave ovens: the emerging application of highly efficient domestic plasma reactors. Nanoscale Advances 1(12):4546−4559

doi: 10.1039/c9na00538b
[45]

Druzhinina T, Weltjens W, Hoeppener S, Schubert US. 2009. The selective heating of iron nanoparticles in a single-mode microwave for the patterned growths of carbon nanofibers and nanotubes. Advanced Functional Materials 19(8):1287−1292

doi: 10.1002/adfm.200801720
[46]

Yoon DM, Yoon BJ, Lee KH, Kim HS, Park CG. 2006. Synthesis of carbon nanotubes from solid carbon sources by direct microwave irradiation. Carbon 44(7):1339−1343

doi: 10.1016/j.carbon.2005.12.008
[47]

Nie H, Cui M, Russell TP. 2013. A route to rapid carbon nanotube growth. Chemical Communications 49(45):5159−5161

doi: 10.1039/c3cc41746h
[48]

Mahar B, Laslau C, Yip R, Sun Y. 2007. Development of carbon nanotube-based sensors—a review. IEEE Sensors Journal 7(1−2):266−284

doi: 10.1109/JSEN.2006.886863
[49]

Avraham ES, Westover AS, Girshevitz O, Pint CL, Nessim GD. 2019. Modulating the height of carbon nanotube forests by controlling the molybdenum thin film reservoir thickness. Nanoscale 11(4):1929−1936

doi: 10.1039/c8nr08197b
[50]

Liu C, Li S, Wu Z, Yang J, Qin J, et al. 2025. Microwave-assisted catalytic upcycling of plastic wastes over heterojunction-structured layered triple oxides. ACS Applied Materials & Interfaces 17(19):28188−28198

doi: 10.1021/acsami.5c02560
[51]

Lee BS, Yang HS, Yu WR. 2014. Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602

doi: 10.1088/0957-4484/25/46/465602
[52]

Aboagye A, Elbohy H, Kelkar AD, Qiao Q, Zai J, et al. 2015. Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 11:550−556

doi: 10.1016/j.nanoen.2014.10.033
[53]

Li W, Li M, Wang M, Zeng L, Yu Y. 2015. Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693−701

doi: 10.1016/j.nanoen.2015.03.027
[54]

Simon A, Seyring M, Kämnitz S, Richter H, Voigt I, et al. 2015. Carbon nanotubes and carbon nanofibers fabricated on tubular porous Al2O3 substrates. Carbon 90:25−33

doi: 10.1016/j.carbon.2015.03.048
[55]

Xing Y, Wang Y, Zhou C, Zhang S, Fang B. 2014. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage. ACS Applied Materials & Interfaces 6(4):2561−2567

doi: 10.1021/am404988b
[56]

Ren J, Li FF, Lau J, González-Urbina L, Licht S. 2015. One-pot synthesis of carbon nanofibers from CO2. Nano Letters 15(9):6142−6148

doi: 10.1021/acs.nanolett.5b02427
[57]

Mori S, Suzuki M. 2009. Catalyst-free low-temperature growth of carbon nanofibers by microwave plasma-enhanced CVD. Thin Solid Films 517(14):4264−4267

doi: 10.1016/j.tsf.2009.02.009
[58]

Bigdeli S, Fatemi S. 2015. Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation: a modified nano-adsorbent for deep desulfurization of liquid fuels. Chemical Engineering Journal 269:306−315

doi: 10.1016/j.cej.2015.01.059
[59]

Gupta VK, Agarwal S, Tyagi I, Sohrabi M, Fakhri A, et al. 2016. Microwave-assisted hydrothermal synthesis and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology. Journal of Industrial and Engineering Chemistry 41:158−164

doi: 10.1016/j.jiec.2016.07.018
[60]

Deeney C, McKiernan EP, Belhout SA, Rodriguez BJ, Redmond G, et al. 2019. Template-assisted synthesis of luminescent carbon nanofibers from beverage-related precursors by microwave heating. Molecules 24(8):1455

doi: 10.3390/molecules24081455
[61]

Li Z, Chen L, Meng S, Guo L, Huang J, et al. 2015. Field and temperature dependence of intrinsic diamagnetism in graphene: theory and experiment. Physical Review B 91(9):094429

doi: 10.1103/PhysRevB.91.094429
[62]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, et al. 2004. Electric field effect in atomically thin carbon films. Science 306(5696):666−669

doi: 10.1126/science.1102896
[63]

Ding J, Rahman OU, Peng W, Dou H, Yu H. 2018. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings. Applied Surface Science 427:981−991

doi: 10.1016/j.apsusc.2017.08.224
[64]

Lee D, Lee B, Park KH, Ryu HJ, Jeon S, et al. 2015. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Letters 15(2):1238−1244

doi: 10.1021/nl504397h
[65]

Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, et al. 2012. A roadmap for graphene. Nature 490(7419):192−200

doi: 10.1038/nature11458
[66]

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, et al. 2008. Superior thermal conductivity of single-layer graphene. Nano Letters 8(3):902−907

doi: 10.1021/nl0731872
[67]

Lee JU, Yoon D, Cheong H. 2012. Estimation of Young's modulus of graphene by Raman spectroscopy. Nano Letters 12(9):4444−4448

doi: 10.1021/nl301073q
[68]

Zhu Y, Murali S, Cai W, Li X, Suk JW, et al. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials 22(35):3906−3924

doi: 10.1002/adma.201001068
[69]

Lu SY, Jin M, Zhang Y, Niu YB, Gao J, et al. 2018. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Advanced Energy Materials 8(11):1702545

doi: 10.1002/aenm.201702545
[70]

Jiang MJ, Zhang Y, Wu G, Chen SC, Chen L, et al. 2019. NIR light manipulated "paper art" for customizing devices with sophisticated structure from DA-epoxy/graphene composites. Composites Part B: Engineering 177:107369

doi: 10.1016/j.compositesb.2019.107369
[71]

Pandey S, Karakoti M, Surana K, Dhapola PS, SanthiBhushan B, et al. 2021. Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Scientific Reports 11(1):3916

doi: 10.1038/s41598-021-83483-8
[72]

Kittusamy RK, Rajagopal V, Felix PG. 2023. Numerical and experimental investigation on the melting heat transfer of nanographene-enhanced phase change material composites for thermal energy storage applications. International Journal of Heat and Mass Transfer 206:123940

doi: 10.1016/j.ijheatmasstransfer.2023.123940
[73]

He G, Huang S, Villalobos LF, Zhao J, Mensi M, et al. 2019. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy & Environmental Science 12(11):3305−3312

doi: 10.1039/c9ee01238a
[74]

Seo DH, Pineda S, Woo YC, Xie M, Murdock AT, et al. 2018. Anti-fouling graphene-based membranes for effective water desalination. Nature Communications 9:683

doi: 10.1038/s41467-018-02871-3
[75]

Hashmi A, Nayak V, Singh KR, Jain B, Baid M, et al. 2022. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. Materials Today Advances 13:100208

doi: 10.1016/j.mtadv.2022.100208
[76]

Jirimali H, Singh J, Boddula R, Lee JK, Singh V. 2022. Nano-structured carbon: its synthesis from renewable agricultural sources and important applications. Materials 15(11):3969

doi: 10.3390/ma15113969
[77]

Poorna A, Saravanathamizhan R, Balasubramanian N. 2021. Graphene and graphene-like structure from biomass for Electrochemical Energy Storage application - a review. Electrochemical Science Advances 1(3):e2000028

doi: 10.1002/elsa.202000028
[78]

Qiu S, Li W, Zheng W, Zhao H, Wang L. 2017. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution. ACS Applied Materials & Interfaces 9(39):34294−34304

doi: 10.1021/acsami.7b08325
[79]

Chen K, Shi L, Zhang Y, Liu Z. 2018. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chemical Society Reviews 47(9):3018−3036

doi: 10.1039/c7cs00852j
[80]

Song M, Kitipornchai S, Yang J. 2017. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures 159:579−588

doi: 10.1016/j.compstruct.2016.09.070
[81]

Bhattacharjee S, MacIntyre CR, Wen X, Bahl P, Kumar U, et al. 2020. Nanoparticles incorporated graphene-based durable cotton fabrics. Carbon 166:148−163

doi: 10.1016/j.carbon.2020.05.029
[82]

Ren PG, Yan DX, Ji X, Chen T, Li ZM. 2011. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5):055705

doi: 10.1088/0957-4484/22/5/055705
[83]

Zhang J, Yang H, Shen G, Cheng P, Zhang J, et al. 2010. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 46(7):1112−1114

doi: 10.1039/b917705a
[84]

Calderon-Ayala G, Cortez-Valadez M, Mani-Gonzalez PG, Britto Hurtado R, Contreras-Rascon JI, et al. 2017. Green synthesis of reduced graphene oxide using ball milling. Carbon Letters 21(1):93−97

doi: 10.5714/CL.2017.21.093
[85]

De Silva KKH, Huang HH, Joshi R, Yoshimura M. 2020. Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 166:74−90

doi: 10.1016/j.carbon.2020.05.015
[86]

Lyu J, Mayyas M, Salim O, Zhu H, Chu D, et al. 2019. Electrochemical performance of hydrothermally synthesized rGO based electrodes. Materials Today Energy 13:277−284

doi: 10.1016/j.mtener.2019.06.006
[87]

Tan H, Wang D, Guo Y. 2018. Thermal growth of graphene: a review. Coatings 8(1):40

doi: 10.3390/coatings8010040
[88]

Kumar PV, Bardhan NM, Chen GY, Li Z, Belcher AM, et al. 2016. New insights into the thermal reduction of graphene oxide: impact of oxygen clustering. Carbon 100:90−98

doi: 10.1016/j.carbon.2015.12.087
[89]

Toh SY, Loh KS, Kamarudin SK, Daud WRW. 2014. Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chemical Engineering Journal 251:422−434

doi: 10.1016/j.cej.2014.04.004
[90]

Marrani AG, Motta A, Schrebler R, Zanoni R, Dalchiele EA. 2019. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide. Electrochimica Acta 304:231−238

doi: 10.1016/j.electacta.2019.02.108
[91]

Marrani AG, Coico AC, Giacco D, Zanoni R, Scaramuzzo FA, et al. 2018. Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium. Applied Surface Science 445:404−414

doi: 10.1016/j.apsusc.2018.03.147
[92]

Aunkor MTH, Mahbubul IM, Saidur R, Metselaar HSC. 2016. The green reduction of graphene oxide. RSC Advances 6(33):27807−27828

doi: 10.1039/c6ra03189g
[93]

Zhang Y, Hao H, Wang L. 2016. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide. Applied Surface Science 390:385−392

doi: 10.1016/j.apsusc.2016.08.127
[94]

Mohandoss M, Gupta SS, Nelleri A, Pradeep T, Maliyekkal SM. 2017. Solar mediated reduction of graphene oxide. RSC Advances 7(2):957−963

doi: 10.1039/c6ra24696f
[95]

Todorova N, Giannakopoulou T, Boukos N, Vermisoglou E, Lekakou C, et al. 2017. Self-propagating solar light reduction of graphite oxide in water. Applied Surface Science 391:601−608

doi: 10.1016/j.apsusc.2016.04.088
[96]

Han DD, Zhang YL, Jiang HB, Xia H, Feng J, et al. 2015. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Advanced Materials 27(2):332−338

doi: 10.1002/adma.201403587
[97]

Schwenke AM, Hoeppener S, Schubert US. 2015. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Advanced Materials 27(28):4113−4141

doi: 10.1002/adma.201500472
[98]

Li Z, Yao Y, Lin Z, Moon KS, Lin W, et al. 2010. Ultrafast, dry microwave synthesis of graphene sheets. Journal of Materials Chemistry 20(23):4781−4783

doi: 10.1039/c0jm00168f
[99]

Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, et al. 2016. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306):1413−1416

doi: 10.1126/science.aah3398
[100]

Jiang WS, Yang C, Chen GX, Yan XQ, Chen SN, et al. 2018. Preparation of high-quality graphene using triggered microwave reduction under an air atmosphere. Journal of Materials Chemistry C 6(7):1829−1835

doi: 10.1039/c7tc03957c
[101]

Wan J, Huang L, Wu J, Xiong L, Hu Z, et al. 2018. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Advanced Functional Materials 28(22):1800382

doi: 10.1002/adfm.201800382
[102]

Zhao Y, He J. 2019. Novel template-assisted microwave conversion of graphene oxide to graphene patterns: a reduction transfer mechanism. Carbon 148:159−163

doi: 10.1016/j.carbon.2019.03.081
[103]

Han HJ, Chen YN, Wang ZJ. 2015. Effect of microwave irradiation on reduction of graphene oxide films. RSC Advances 5(113):92940−92946

doi: 10.1039/c5ra19268d
[104]

Zedan AF, Sappal S, Moussa S, El-Shall MS. 2010. Ligand-controlled microwave synthesis of cubic and hexagonal CdSe nanocrystals supported on graphene photoluminescence quenching by graphene. The Journal of Physical Chemistry C 114(47):19920−19927

doi: 10.1021/jp107297x
[105]

Kumar D, Raghavan CM, Sridhar C, Shin JH, Ryu SH, et al. 2015. Microwave-assisted synthesis, characterization of reduced graphene oxide, and its antibacterial activity. Bulletin of the Korean Chemical Society 36(8):2034−2038

doi: 10.1002/bkcs.10394
[106]

Wu W, Liu M, Gu Y, Guo B, Ma H, et al. 2020. Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process. Chemical Engineering Journal 381:122592

doi: 10.1016/j.cej.2019.122592
[107]

Eswaraiah V, Aravind SSJ, Ramaprabhu S. 2011. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. Journal of Materials Chemistry 21(19):6800−6803

doi: 10.1039/c1jm10808e
[108]

Mohanapriya K, Ghosh G, Jha N. 2016. Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode. Electrochimica Acta 209:719−729

doi: 10.1016/j.electacta.2016.03.111
[109]

Liu Z, Niu W, Chu H, Zhou T, Niu Z. 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13(2):3429−3446

doi: 10.15376/biores.13.2.3429-3446
[110]

Wu Z, Huang X, Chen R, Mao X, Qi X. 2022. The United States and China on the paths and policies to carbon neutrality. Journal of Environmental Management 320:115785

doi: 10.1016/j.jenvman.2022.115785
[111]

Xiang W, Zhang X, Cao C, Quan G, Wang M, et al. 2022. Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: characteristics and adsorption performance. Bioresource Technology 355:127274

doi: 10.1016/j.biortech.2022.127274
[112]

Gu X, Ma X, Li L, Liu C, Cheng K, et al. 2013. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. Journal of Analytical and Applied Pyrolysis 102:16−23

doi: 10.1016/j.jaap.2013.04.009
[113]

So CL, Eberhardt TL. 2018. FTIR-based models for assessment of mass yield and biofuel properties of torrefied wood. Wood Science and Technology 52(1):209−227

doi: 10.1007/s00226-017-0970-1
[114]

Balat M. 2008. Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 30(7):620−635

doi: 10.1080/15567030600817258
[115]

Li Y, Liu H, Xiao K, Liu X, Hu H, et al. 2019. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: influence of moisture, carbohydrates, proteins and lipids. Bioresource Technology 272:482−488

doi: 10.1016/j.biortech.2018.10.066
[116]

Shahbeik H, Peng W, Panahi HKS, Dehhaghi M, Guillemin GJ, et al. 2022. Synthesis of liquid biofuels from biomass by hydrothermal gasification: a critical review. Renewable and Sustainable Energy Reviews 167:112833

doi: 10.1016/j.rser.2022.112833
[117]

Zhang W, Chen Q, Chen J, Xu D, Zhan H, et al. 2023. Machine learning for hydrothermal treatment of biomass: a review. Bioresource Technology 370:128547

doi: 10.1016/j.biortech.2022.128547
[118]

Funke A, Ziegler F. 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts and Biorefining 4(2):160−177

doi: 10.1002/bbb.198
[119]

Chen C, Fan D, Ling H, Huang X, Yang G, et al. 2022. Microwave catalytic co-pyrolysis of Chlorella vulgaris and high density polyethylene over activated carbon supported monometallic: characteristics and bio-oil analysis. Bioresource Technology 363:127881

doi: 10.1016/j.biortech.2022.127881
[120]

Ke C, Zhang Y, Gao Y, Pan Y, Li B, et al. 2019. Syngas production from microwave-assisted air gasification of biomass: part 1 model development. Renewable Energy 140:772−778

doi: 10.1016/j.renene.2019.03.025
[121]

Zhang Y, Ke C, Gao Y, Liu S, Pan Y, et al. 2019. Syngas production from microwave-assisted air gasification of biomass: part 2 model validation. Renewable Energy 140:625−632

doi: 10.1016/j.renene.2019.03.024
[122]

Fodah AEM, Ghosal MK, Behera D. 2021. Quality assessment of bio-oil and biochar from microwave-assisted pyrolysis of corn stover using different adsorbents. Journal of the Energy Institute 98:63−76

doi: 10.1016/j.joei.2021.06.008
[123]

Fan S, Cui L, Li H, Guang M, Liu H, et al. 2023. Value-added biochar production from microwave pyrolysis of peanut shell. International Journal of Chemical Reactor Engineering 21(8):1035−1046

doi: 10.1515/ijcre-2023-0005
[124]

Aniza R, Chen WH, Yang FC, Pugazhendh A, Singh Y. 2022. Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis. Bioresource Technology 343:126140

doi: 10.1016/j.biortech.2021.126140
[125]

Gronnow MJ, Budarin VL, Mašek O, Crombie KN, Brownsort PA, et al. 2013. Torrefaction/biochar production by microwave and conventional slow pyrolysis–comparison of energy properties. GCB Bioenergy 5(2):144−152

doi: 10.1111/gcbb.12021
[126]

Selvam SM, Paramasivan B. 2022. Microwave assisted carbonization and activation of biochar for energy-environment nexus: a review. Chemosphere 286(1):131631

doi: 10.1016/j.chemosphere.2021.131631
[127]

Li M, Li Y, Lu C, Wei T, Ahmed M, et al. 2025. Microwave pyrolysis of rapeseed straw for low sulfur content and high heating value (HHV) solid fuel production: transformation mechanism and form of sulfur in biochar during the pyrolysis process. Energy 326:136381

doi: 10.1016/j.energy.2025.136381
[128]

Huang YF, Sung HT, Chiueh PT, Lo SL. 2017. Microwave torrefaction of sewage sludge and leucaena. Journal of the Taiwan Institute of Chemical Engineers 70:236−243

doi: 10.1016/j.jtice.2016.10.056
[129]

Zhang J, Zuo W, Tian Y, Chen L, Yin L, et al. 2017. Sulfur transformation during microwave and conventional pyrolysis of sewage sludge. Environmental Science & Technology 51(1):709−717

doi: 10.1021/acs.est.6b03784
[130]

Gómez N, Banks SW, Nowakowski DJ, Rosas JG, Cara J, et al. 2018. Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Processing Technology 172:97−105

doi: 10.1016/j.fuproc.2017.11.021
[131]

Reza MT, Lynam JG, Uddin MH, Coronella CJ. 2013. Hydrothermal carbonization: fate of inorganics. Biomass and Bioenergy 49:86−94

doi: 10.1016/j.biombioe.2012.12.004
[132]

Lin Y, Ge Y, He Q, Chen P, Xiao H. 2022. The redistribution and migration mechanism of chlorine during hydrothermal carbonization of waste biomass and fuel properties of hydrochars. Energy 244:122578

doi: 10.1016/j.energy.2021.122578
[133]

Chu G, Zhao J, Chen F, Dong X, Zhou D, et al. 2017. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environmental Pollution 227:372−379

doi: 10.1016/j.envpol.2017.04.067
[134]

Parvez AM, Afzal MT, Jiang P, Wu T. 2020. Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: product characterization, thermodynamic assessment and bio-hydrogen production. Biomass and Bioenergy 139:105651

doi: 10.1016/j.biombioe.2020.105651
[135]

Nzediegwu C, Arshad M, Ulah A, Naeth MA, Chang SX. 2021. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresource Technology 320:124282

doi: 10.1016/j.biortech.2020.124282
[136]

Fodah AEM, Ghosal MK, Behera D. 2021. Bio-oil and biochar from microwave-assisted catalytic pyrolysis of corn stover using sodium carbonate catalyst. Journal of the Energy Institute 94:242−251

doi: 10.1016/j.joei.2020.09.008
[137]

Liew RK, Nam WL, Chong MY, Phang XY, Su MH, et al. 2018. Oil palm waste: an abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection 115:57−69

doi: 10.1016/j.psep.2017.10.005
[138]

Kumar NV, Sawargaonkar GL, Rani CS, Singh A, Prakash TR, et al. 2023. Comparative analysis of pigeonpea stalk biochar characteristics and energy use under different biochar production methods. Sustainability 15(19):1−17

doi: 10.3390/su151914394
[139]

Lin YL, Zheng NY, Cheng HJ, Chang CC. 2024. Blending Saccharum bagasse and waste cooking oil for biofuel production via microwave co-torrefaction process. Fuel 367:131349

doi: 10.1016/j.fuel.2024.131349
[140]

Zhou J, Liu S, Zhou N, Fan L, Zhang Y, et al. 2018. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresource Technology 256:295−301

doi: 10.1016/j.biortech.2018.02.034
[141]

Ali BM, Salih MI, Abdulqader MA, Bakthavatchalam B, Hussein OA. 2024. Dehydration and decarboxylation via pyrolysis process of waste oily sludge accumulated at North Refineries Company Baiji for use as a pyro-fuel. Desalination and Water Treatment 318:100330

doi: 10.1016/j.dwt.2024.100330
[142]

Foong SY, Latiff NSA, Liew RK, Yek PNY, Lam SS. 2020. Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies 3:728−733

doi: 10.1016/j.mset.2020.08.002
[143]

Salema AA, Afzal MT, Bennamoun L. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology 233:353−362

doi: 10.1016/j.biortech.2017.02.113
[144]

Rajasekhar Reddy B, Vinu R. 2018. Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Processing Technology 178:41−52

doi: 10.1016/j.fuproc.2018.04.018
[145]

Ge S, Foong SY, Ma NL, Liew RK, Wan Mahari WA, et al. 2020. Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products. Renewable and Sustainable Energy Reviews 127:109871

doi: 10.1016/j.rser.2020.109871
[146]

Nhuchhen DR, Afzal MT, Dreise T, Salema AA. 2018. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass and Bioenergy 119:293−303

doi: 10.1016/j.biombioe.2018.09.035
[147]

Zhang C, Wang C, Cao G, Chen WH, Ho SH. 2019. Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 246:375−385

doi: 10.1016/j.fuel.2019.02.139
[148]

Chen WH, Arpia AA, Chang JS, Kwon EE, Park YK, et al. 2022. Catalytic microwave torrefaction of microalga Chlorella vulgaris FSP-E with magnesium oxide optimized via taguchi approach: a thermo-energetic analysis. Chemosphere 290:133374

doi: 10.1016/j.chemosphere.2021.133374
[149]

Shakiba A, Aliasghar A, Moazeni K, Pazoki M. 2023. Hydrothermal carbonization of sewage sludge with sawdust and corn stalk: optimization of process parameters and characterization of hydrochar. Bioenergy Research 16(4):2386−2397

doi: 10.1007/s12155-022-10552-9
[150]

Arpia AA, Chen WH, Ubando AT, Tabatabaei M, Lam SS, et al. 2021. Catalytic microwave-assisted torrefaction of sugarcane bagasse with calcium oxide optimized via Taguchi approach: product characterization and energy analysis. Fuel 305:121543

doi: 10.1016/j.fuel.2021.121543
[151]

Idris R, Chong WWF, Ali A, Idris S, Hasan MF, et al. 2021. Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon. Environmental Technology & Innovation 21:101291

doi: 10.1016/j.eti.2020.101291
[152]

Zhou C, Zhang Y, Liu Y, Deng Z, Li X, et al. 2021. Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation. Energy 218:119398

doi: 10.1016/j.energy.2020.119398
[153]

Mong GR, Chong CT, Ng JH, Chong WWF, Lam SS, et al. 2020. Microwave pyrolysis for valorisation of horse manure biowaste. Energy Conversion and Management 220:113074

doi: 10.1016/j.enconman.2020.113074
[154]

Haeldermans T, Claesen J, Maggen J, Carleer R, Yperman J, et al. 2019. Microwave assisted and conventional pyrolysis of MDF–characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis 138:218−230

doi: 10.1016/j.jaap.2018.12.027
[155]

Ellison CR, Hoff R, Mărculescu C, Boldor D. 2020. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Applied Energy 259:114217

doi: 10.1016/j.apenergy.2019.114217
[156]

Lin J, Sun S, Xu D, Cui C, Ma R, et al. 2022. Microwave directional pyrolysis and heat transfer mechanisms based on multiphysics field stimulation: design porous biochar structure via controlling hotspots formation. Chemical Engineering Journal 429:132195

doi: 10.1016/j.cej.2021.132195
[157]

Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, et al. 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chemical Engineering Journal 389:124401

doi: 10.1016/j.cej.2020.124401
[158]

Kumar NS, Grekov D, Pré P, Alappat BJ. 2020. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications–an overview. Renewable and Sustainable Energy Reviews 124:109743

doi: 10.1016/j.rser.2020.109743
[159]

Arpia AA, Chen WH, Lam SS, Rousset P, de Luna MDG. 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review. Chemical Engineering Journal 403:126233

doi: 10.1016/j.cej.2020.126233
[160]

Fang Z, Liu F, Li Y, Li B, Yang T, et al. 2021. Influence of microwave-assisted pyrolysis parameters and additives on phosphorus speciation and transformation in phosphorus-enriched biochar derived from municipal sewage sludge. Journal of Cleaner Production 287:125550

doi: 10.1016/j.jclepro.2020.125550
[161]

Duarah P, Debnath B, Purkait MK. 2024. Synthesis of antibacterial fluorescent carbon dots and green coal-like hydrochar from tea Industry byproducts via hydrothermal carbonization. Industrial Crops and Products 221:119364

doi: 10.1016/j.indcrop.2024.119364
[162]

Zhang X, Xu H, Xiang W, You X, Dai H, et al. 2024. Lignin-impregnated biochar assisted with microwave irradiation for CO2 capture: adsorption performance and mechanism. Biochar 6(1):22

doi: 10.1007/s42773-024-00310-9
[163]

Zhang X, Xiang W, Miao X, Li F, Qi G, et al. 2022. Microwave biochars produced with activated carbon catalyst: characterization and sorption of volatile organic compounds (VOCs). Science of The Total Environment 827:153996

doi: 10.1016/j.scitotenv.2022.153996
[164]

Zhang L, Ai T, Tian X, Xu C, Wu Y, et al. 2022. Microwave-assisted preparation of Ag/Fe magnetic biochar from clivia leaves for adsorbing daptomycin antibiotics. Open Chemistry 20(1):388−400

doi: 10.1515/chem-2022-0156
[165]

Luo Y, Lin Q, Liu Y, Zheng J, Zeng C, et al. 2025. Construction of waste-modified biochar as a means for the efficient removal of BDE209 from soil via microwaves: a novel low-toxicity degradation pathway. Journal of Environmental Chemical Engineering 13(3):116173

doi: 10.1016/j.jece.2025.116173
[166]

Wan Z, Sun Y, Tsang DCW, Xu Z, Khan E, et al. 2020. Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar. Chemical Engineering Journal 395:125138

doi: 10.1016/j.cej.2020.125138
[167]

Zhang Y, He M, Wang L, Yan J, Ma B, et al. 2022. Biochar as construction materials for achieving carbon neutrality. Biochar 4(1):59

doi: 10.1007/s42773-022-00182-x
[168]

Qiu T, Li C, Zhao W, Naz MY, Zhang Y. 2025. Microwave-assisted pyrolysis of biomass: influence of feedstock and pyrolysis parameters on porous biochar properties. Biomass and Bioenergy 193:107583

doi: 10.1016/j.biombioe.2024.107583
[169]

Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, et al. 2020. Effect of pyrolysis temperature on PhysicoChemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research 8:85

doi: 10.3389/fenrg.2020.00085
[170]

Fernandes BCC, Mendes KF, Tornisielo VL, Teófilo TMS, Takeshita V, et al. 2022. Effect of pyrolysis temperature on eucalyptus wood residues biochar on availability and transport of hexazinone in soil. International Journal of Environmental Science and Technology 19(1):499−514

doi: 10.1007/s13762-021-03147-y
[171]

Hu E, Tian Y, Yang Y, Dai C, Li M, et al. 2022. Pyrolysis behaviors of corn stover in new two-stage rotary kiln with baffle. Journal of Analytical and Applied Pyrolysis 161:105398

doi: 10.1016/j.jaap.2021.105398
[172]

Hu E, Shang S, Wang N, Nan X, Zhong S, et al. 2019. Influence of the pyrolytic temperature and feedstock on the characteristics and naphthalene adsorption of crop straw-derived biochars. BioResources 14(2):2885−2902

doi: 10.15376/biores.14.2.2885-2902
[173]

Chen Y, Li C, Zhang L, Zhang S, Wang Y, et al. 2025. Inherent water in green pine needles and cypress leaves induces self-activation in microwave pyrolysis. Fuel 379:133101

doi: 10.1016/j.fuel.2024.133101
[174]

Hu J, Mi B, Chen L, Yuan Y, Zhang J, et al. 2024. An economical preparation strategy of magnetic biochar with high specific surface area for efficient removal of methyl orange. International Journal of Biological Macromolecules 276(1):134156

doi: 10.1016/j.ijbiomac.2024.134156
[175]

Jiang Y, Zhang K, Li C, Shao Y, Zhang L, et al. 2024. Investigation of interactions of nickel with pyrolytic products in pyrolysis of poplar with nickel acetate via furnace or microwave heating. Journal of Industrial and Engineering Chemistry 134:123−36

doi: 10.1016/j.jiec.2023.12.043
[176]

Charmas B, Wawrzaszek B, Jedynak K. 2024. Effect of pyrolysis temperature and hydrothermal activation on structure, physicochemical, thermal and dye adsorption characteristics of the biocarbons. Chemphyschem 25(4):e202300773

doi: 10.1002/cphc.202300773
[177]

Huang YF, Chiueh PT, Shih CH, Lo SL, Sun L, et al. 2015. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75−82

doi: 10.1016/j.energy.2015.02.026
[178]

Lin J, Xu Z, Zhang Q, Cao Y, Mašek O, et al. 2024. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. Bioresource Technology 393:130085

doi: 10.1016/j.biortech.2023.130085
[179]

Brickler CA, Wu Y, Li S, Anandhi A, Chen G. 2021. Comparing physicochemical properties and sorption behaviors of pyrolysis-derived and microwave-mediated biochar. Sustainability 13(4):2359

doi: 10.3390/su13042359
[180]

Song X, Zhang Y, Cao N, Sun D, Zhang Z, et al. 2021. Sustainable chromium (VI) removal from contaminated groundwater using nano-magnetite-modified biochar via rapid microwave synthesis. Molecules 26(1):103

doi: 10.3390/molecules26010103
[181]

Qi G, Pan Z, Zhang X, Chang S, Wang H, et al. 2023. Microwave biochar produced with activated carbon catalyst: characterization and adsorption of heavy metals. Environmental Research 216(4):114732

doi: 10.1016/j.envres.2022.114732
[182]

Antunes E, Jacob MV, Brodie G, Schneider PA. 2017. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Management 203:264−272

doi: 10.1016/j.jenvman.2017.07.071
[183]

Sui H, Chen Y, Chen H, Zhao Y, Tian C, et al. 2025. Characterization and mechanistic insights into coke formation on biochar-based catalysts under microwave-assisted biomass pyrolysis. Industrial Crops and Products 226:120645

doi: 10.1016/j.indcrop.2025.120645
[184]

Wang Y, Liu Z, Deng H, Cao P, Tan T, et al. 2024. Study on the properties and components of solid-liquid products by co-pyrolysis of sludge and cotton stalk. Journal of Analytical and Applied Pyrolysis 182:106712

doi: 10.1016/j.jaap.2024.106712
[185]

An Q, Liu Y, Cao X, Yang P, Cheng L, et al. 2024. Microwave catalytic pyrolysis of solid digestate for high quality bio-oil and biochar. Journal of Analytical and Applied Pyrolysis 182:106683

doi: 10.1016/j.jaap.2024.106683
[186]

Leite JCS, Suota MJ, Ramos LP, Lenzi MK, Luz LFL Jr. 2024. Development of a microwave-assisted bench reactor for biomass pyrolysis using hybrid heating. ACS Omega 9(23):24987−24997

doi: 10.1021/acsomega.4c02050
[187]

Correia I, Ilkaeva M, Castellino M, Bocchini S, Novais RM, et al. 2024. Impact of pyrolysis heating methods on biochars with enhanced CO2/N2 separation and their incorporation in 3D-printed composites. Journal of Environmental Chemical Engineering 12(5):113875

doi: 10.1016/j.jece.2024.113875
[188]

Minaei S, Benis KZ, McPhedran KN, Soltan J. 2024. Adsorption of sulfamethoxazole and lincomycin from single and binary aqueous systems using acid-modified biochar from activated sludge biomass. Journal of Environmental Management 358:120742

doi: 10.1016/j.jenvman.2024.120742
[189]

Nazari M, Aguilar MM, Ghislain T, Lavoie JM. 2024. Microwave-assisted pyrolysis of biomass waste for production of high-quality biochar: corn stover and hemp stem case studies. Biomass and Bioenergy 187:107302

doi: 10.1016/j.biombioe.2024.107302
[190]

Tsai WT, Kuo LA, Tsai CH, Huang HL, Yang RY, et al. 2023. Production of porous biochar from cow dung using microwave process. Materials 16(24):7667

doi: 10.3390/ma16247667
[191]

Nam WL, Phang XY, Su MH, Liew RK, Ma NL, et al. 2018. Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Science of The Total Environment 624:9−16

doi: 10.1016/j.scitotenv.2017.12.108
[192]

Kuo LA, Tsai WT, Yang RY, Tsai JH. 2023. Production of high-porosity biochar from rice husk by the microwave pyrolysis process. Processes 11(11):3119

doi: 10.3390/pr11113119
[193]

Mabaso T, Lo SL, Chiueh PT. 2024. Effect of pyrolytic temperature on the adsorption of Pb (II) from synthetic wastewater onto bamboo chopstick biochar: a conventional vs. microwave-assisted pyrolysis approach. Sustainable Environment Research 34(1):31

doi: 10.1186/s42834-024-00238-6
[194]

Qi G, Pan Z, Zhang X, Wang H, Chang S, et al. 2024. Novel pretreatment with hydrogen peroxide enhanced microwave biochar for heavy metals adsorption: characterization and adsorption performance. Chemosphere 346:140580

doi: 10.1016/j.chemosphere.2023.140580
[195]

Nguyen DK, Dinh VP. 2025. Highly efficient removal of Cr (VI) by biochar derived from vietnamese young durian fruit: comparison of traditional and microwave-assisted pyrolysis. Langmuir 41(1):518−531

doi: 10.1021/acs.langmuir.4c03775
[196]

Benis KZ, Minaei S, Soltan J, McPhedran KN. 2022. Adsorption of lincomycin on microwave activated biochar: batch and dynamic adsorption. Chemical Engineering Research and Design 187:140−150

doi: 10.1016/j.cherd.2022.08.058
[197]

Luo J, Chen Y, Huang H, Ma R, Ma N, et al. 2023. Microwave-coordinated KOH directionally modulated N/O co-doped porous biochar from Enteromorpha and its structure-effect relationships in efficient CO2 capture. Chemical Engineering Journal 473:145279

doi: 10.1016/j.cej.2023.145279
[198]

dos Reis GS, Bergna D, Tuomikoski S, Grimm A, Lima EC, et al. 2022. Preparation and characterization of pulp and paper mill sludge-activated biochars using alkaline activation: a box–behnken design approach. ACS Omega 7(36):32620−32630

doi: 10.1021/acsomega.2c04290
[199]

Zamiri MA, Niu CH. 2022. Development and characterization of novel activated carbons based on reed canary grass. Industrial Crops and Products 187(A):115316

doi: 10.1016/j.indcrop.2022.115316
[200]

Sousa ÉML, Otero M, Rocha LS, Gil MV, Ferreira P, et al. 2022. Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes - application in the removal of antibiotics from water. Journal of Hazardous Materials 431:128556

doi: 10.1016/j.jhazmat.2022.128556
[201]

Liu C, Wang H, Karim AM, Sun J, Wang Y. 2014. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews 43(22):7594−7623

doi: 10.1039/c3cs60414d
[202]

Sharma A, Pareek V, Zhang D. 2015. Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews 50:1081−1096

doi: 10.1016/j.rser.2015.04.193
[203]

Akazawa M, Kojima Y, Kato Y. 2016. Effect of pyrolysis temperature on the pyrolytic degradation mechanism of β-aryl ether linkages. Journal of Analytical and Applied Pyrolysis 118:164−174

doi: 10.1016/j.jaap.2016.02.001
[204]

Liu WJ, Jiang H, Yu HQ. 2015. Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry 17(11):4888−4907

doi: 10.1039/c5gc01054c
[205]

Zhang Y, Fan S, Liu T, Fu W, Li B. 2022. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustainable Energy Technologies and Assessments 50:101873

doi: 10.1016/j.seta.2021.101873
[206]

Motasemi F, Afzal MT. 2013. A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews 28:317−330

doi: 10.1016/j.rser.2013.08.008
[207]

Asomaning J, Haupt S, Chae M, Bressler DC. 2018. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renewable and Sustainable Energy Reviews 92:642−657

doi: 10.1016/j.rser.2018.04.084
[208]

Bundhoo ZMA. 2018. Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews 82:1149−1177

doi: 10.1016/j.rser.2017.09.066
[209]

Yin P, Lan D, Lu C, Jia Z, Feng A, et al. 2025. Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. Journal of Materials Science & Technology 204:204−223

doi: 10.1016/j.jmst.2024.04.007
[210]

He M, Hu J, Yan H, Zhong X, Zhang Y, et al. 2025. Shape anisotropic chain-Like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Advanced Functional Materials 35(18):2316691

doi: 10.1002/adfm.202316691
[211]

Kumar P, Pathak S, Singh A, Verma R, Khanduri H, et al. 2024. Augmented magnetic nanoparticle assimilation in rGO sheets for tailored static and dynamic magnetic properties in surface functionalized Co0.8Zn0.2Fe2O4 nanoferrite–rGO hybrid structures. Journal of Materials Chemistry C 12(44):18036−18047

doi: 10.1039/d4tc03498h
[212]

Yang H, Jiang X, Sun J, Zhang B, Su X, et al. 2024. Ferrite doped sucrose-derived porous carbon composites inspired by Pharaoh's Serpent for broadband electromagnetic wave absorption. Journal of Alloys and Compounds 989:174402

doi: 10.1016/j.jallcom.2024.174402
[213]

Zhang B, Qu Z, Ruiz-Agudo C, Yang L, Chi B, et al. 2025. Lightweight magnetic carbon nanotube/cellulose nanofibre aerogels with microstructure engineering for enhanced microwave absorption. Carbon 234:120020

doi: 10.1016/j.carbon.2025.120020
[214]

Meng X, Xu W, Ren X, Zhu M. 2024. Progress and challenges of ferrite matrix microwave absorption materials. Materials 17(10):2315

doi: 10.3390/ma17102315
[215]

Ma M, Tao W, Liao X, Chen S, Shi Y, et al. 2023. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chemical Engineering Journal 452(4):139471

doi: 10.1016/j.cej.2022.139471
[216]

Xie Y, Guo Y, Cheng T, Zhao L, Wang T, et al. 2023. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chemical Engineering Journal 457:141205

doi: 10.1016/j.cej.2022.141205
[217]

Gu W, Sheng J, Huang Q, Wang G, Chen J, et al. 2021. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Letters 13(1):102

doi: 10.1007/s40820-021-00635-1
[218]

Zhou X, Liu S, Hu Y, He J, Zhang W, et al. 2024. Green synthesis of porous bamboo-based activated carbon with high VOCs adsorption performance via steam activation method. Journal of Porous Materials 31(2):737−746

doi: 10.1007/s10934-024-01557-0
[219]

Zhu Y, Li Z, Tao Y, Zhou J, Zhang H. 2022. Hierarchical porous carbon materials produced from heavy bio-oil for high-performance supercapacitor electrodes. Journal of Energy Storage 47:103624

doi: 10.1016/j.est.2021.103624
[220]

Xu H, He Z, Li Y, Wang Y, Zhang Z, et al. 2023. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 213:118290

doi: 10.1016/j.carbon.2023.118290
[221]

Du Y, Liu Y, Wang A, Kong J. 2023. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials. iScience 26(10):107873

doi: 10.1016/j.isci.2023.107873
[222]

Zhang X, Jia Z, Zhang F, Xia Z, Zou J, et al. 2022. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. Journal of Colloid and Interface Science 610:610−620

doi: 10.1016/j.jcis.2021.11.110
[223]

Liang J, Wei Z, Zhang X, Chen F, Cao X, et al. 2023. Lightweight cementite/Fe anchored in nitrogen-doped carbon with tunable dielectric/magnetic loss and low filler loading achieving high-efficiency microwave absorption. Carbon 210:118080

doi: 10.1016/j.carbon.2023.118080
[224]

Zhang S, Lan D, Zheng J, Kong J, Gu J, et al. 2024. Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 221:118925

doi: 10.1016/j.carbon.2024.118925
[225]

Hou T, Jia Z, Dong Y, Liu X, Wu G. 2022. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chemical Engineering Journal 431(1):133919

doi: 10.1016/j.cej.2021.133919
[226]

Li J, Lan D, Cheng Y, Jia Z, Liu P, et al. 2024. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: an effective strategy to achieve boosted microwave absorption and self-anticorrosion. Journal of Materials Science & Technology 196:60−70

doi: 10.1016/j.jmst.2024.02.016
[227]

Zhang S, Lan D, Zheng J, Feng A, Pei Y, et al. 2024. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. International Journal of Minerals, Metallurgy and Materials 31(12):2749−2759

doi: 10.1007/s12613-024-2875-y
[228]

Wang J, Zhang S, Liu Z, Ning T, Yan J, et al. 2023. Graphene-like structure of bio-carbon with CoFe Prussian blue derivative composites for enhanced microwave absorption. Journal of Colloid and Interface Science 652:2029−2041

doi: 10.1016/j.jcis.2023.09.001
[229]

Zhu M, Lei Y, Wu H, Kong L, Xu H, et al. 2022. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. Journal of Materials Science & Technology 129:215−222

doi: 10.1016/j.jmst.2022.04.042
[230]

Zhao X, Yan J, Huang Y, Liu X, Ding L, et al. 2021. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. Journal of Colloid and Interface Science 595:78−87

doi: 10.1016/j.jcis.2021.03.109
[231]

Wang D, Zhang M, Guo Y, Bai T, Liu H, et al. 2022. Facile preparation of a cellulose derived carbon/BN composite aerogel for superior electromagnetic wave absorption. Journal of Materials Chemistry C 10(13):5311−5320

doi: 10.1039/d2tc00205a
[232]

Zhao X, Zhu D, Wu J, Zhang R, Lu X, et al. 2022. Environmentally friendly a multifunctional cellulose-based carbon foam for superior electromagnetic wave absorption performance. Composites Communications 35:101320

doi: 10.1016/j.coco.2022.101320
[233]

Yang S, Sun X, Wang S, Ning Y, Yuan Y, et al. 2022. Electromagnetic wave absorbing properties of coconut shell-derived nanocomposite. Carbon 196:354−364

doi: 10.1016/j.carbon.2022.05.016
[234]

Mou P, Zhao J, Wang G, Shi S, Wan G, et al. 2022. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chemical Engineering Journal 437(2):135285

doi: 10.1016/j.cej.2022.135285
[235]

Wen X, Li C, Liu H, Fan G, Tang Y, et al. 2024. Green carbonization of waste coffee grounds into porous C/Fe hybrids for broadband and high-efficiency microwave absorption. Journal of Materials Science & Technology 170:1−10

doi: 10.1016/j.jmst.2023.05.073
[236]

Lu Z, Wang Y, Di X, Wang N, Cheng R, et al. 2022. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption. Carbon 197:466−475

doi: 10.1016/j.carbon.2022.06.075
[237]

Dong S, Hu P, Li X, Hong C, Zhang X, et al. 2020. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chemical Engineering Journal 398:125588

doi: 10.1016/j.cej.2020.125588
[238]

Lu X, Zhu D, Li X, Li M, Chen Q, et al. 2021. Protein-derived hybrid carbon nanospheres with tunable microwave absorbing performance in the X-band. ACS Applied Electronic Materials 3:2685−2693

doi: 10.1021/acsaelm.1c00274
[239]

Liu C, Dong C, Wang S, Yang D, Lei D, et al. 2024. Electromagnetic wave absorbing biomass kelp derived porous carbon anchored by Fe3O4 nanocomposites. Diamond and Related Materials 146:111211

doi: 10.1016/j.diamond.2024.111211
[240]

Lu C, Geng H, Ma J, Zhao J, Wang R, et al. 2023. Hierarchical porous carbon/Co nanocomposites derived from biomass for high-performance microwave absorption. ACS Applied Nano Materials 6(18):16778−16789

doi: 10.1021/acsanm.3c02981
[241]

Liu J, Liu C, Tong Y, Liu C, Sun H, et al. 2023. In-situ generated Ni/Ni3Si to enhance electromagnetic wave absorption properties of Ni/PDCs/biomass ceramic composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 663:131035

doi: 10.1016/j.colsurfa.2023.131035
[242]

Zhang R, Qiao J, Zhang X, Yang Y, Zheng S, et al. 2022. Biomass-derived porous carbon for microwave absorption. Materials Chemistry and Physics 289:126437

doi: 10.1016/j.matchemphys.2022.126437
[243]

Wang Y, Di X, Chen J, She L, Pan H, et al. 2022. Multi-dimensional C@NiCo-LDHs@Ni aerogel: structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 191:625−635

doi: 10.1016/j.carbon.2022.02.016
[244]

Li Z, Lin H, Wu S, Su X, Wang T, et al. 2022. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption. Composites Science and Technology 229:109673

doi: 10.1016/j.compscitech.2022.109673
[245]

Yu W, Wang Z, Lin J, Xiao Y, Zhu L, et al. 2024. Rose-derived porous carbon and in-situ fabrication of cobalt/nickel nanoparticles composites as high-performance electromagnetic wave absorber. Engineered Science 30:1113

doi: 10.30919/es1113
[246]

Ren L, Wang Y, Jia Z, He Q, Wu G. 2022. Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption. Composites Communications 29:101052

doi: 10.1016/j.coco.2021.101052
[247]

He Y, Wang Y, Ren L, He Q, Wu D, et al. 2022. Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption. Journal of Colloid and Interface Science 627:102−112

doi: 10.1016/j.jcis.2022.07.047
[248]

Elhassan A, Li J, Abdalla I, Xu Z, Yu J, et al. 2025. Ant-nest-inspired biomimetic composite for self-cleaning, heat-insulating, and highly efficient electromagnetic wave absorption. Advanced Functional Materials 35(18):2407458

doi: 10.1002/adfm.202407458
[249]

Shi Q, Zhao Y, Li M, Li B, Hu Z. 2023. 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties. Journal of Colloid and Interface Science 641:449−458

doi: 10.1016/j.jcis.2023.03.062
[250]

Li Z, Lin H, Xie Y, Zhao L, Guo Y, et al. 2022. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. Journal of Materials Science & Technology 124:182−192

doi: 10.1016/j.jmst.2022.03.004
[251]

Gong X, Liu Q, Zhao W, Lu Z, Zhang T. 2022. Almond C/FexOy composite material based on biomass porous carbon structure with high-efficiency microwave absorbing properties. Journal of Materials Science-Materials in Electronics 33(16):13166−13179

doi: 10.1007/s10854-022-08256-z
[252]

Cheng T, Guo Y, Xie Y, Zhao L, Wang T, et al. 2023. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 206:181−191

doi: 10.1016/j.carbon.2023.02.052
[253]

Wang Z, Xu G. 2022. 3D porous Ni@BPC composites for enhanced electromagnetic wave absorption. Journal of Alloys and Compounds 926:166923

doi: 10.1016/j.jallcom.2022.166923
[254]

Yue J, Yu J, Jiang S, Chen Y. 2022. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption. Diamond and Related Materials 126:109054

doi: 10.1016/j.diamond.2022.109054
[255]

Wu Z, Tian K, Huang T, Hu W, Xie F, et al. 2018. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Applied Materials & Interfaces 10(13):11108−1115

doi: 10.1021/acsami.7b17264
[256]

Xi J, Zhou E, Liu Y, Gao W, Ying J, et al. 2017. Wood-based straightway channel structure for high performance microwave absorption. Carbon 124:492−498

doi: 10.1016/j.carbon.2017.07.088
[257]

Wu Z, Meng Z, Yao C, Deng Y, Zhang G, et al. 2022. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption. Materials Chemistry and Physics 275:125246

doi: 10.1016/j.matchemphys.2021.125246
[258]

Wu Z, Guo X, Meng Z, Yao C, Deng Y, et al. 2022. Nickel/porous carbon derived from rice husk with high microwave absorption performance. Journal of Alloys and Compounds 925:166732

doi: 10.1016/j.jallcom.2022.166732
[259]

Yao C, Wu Z, Liu J, Guo X, Zhang W, et al. 2023. Construction of lychee-like MoS2 microspheres on rice husk-derived porous carbon for enhanced dielectric loss and efficient electromagnetic wave absorption. Journal of Materials Science-Materials in Electronics 34(15):1213

doi: 10.1007/s10854-023-10645-x
[260]

Peng Q, Gao C, Song C, Liu Z, Fatehi P, et al. 2024. Wood-derived porous carbon foams filled with Ti3C2TxMXene/CoFe-MOF for electromagnetic shielding with flame retardant, heat insulation and excellent cycle stability. Journal of Industrial and Engineering Chemistry 133:333−344

doi: 10.1016/j.jiec.2023.12.004
[261]

Jiang Y, Xie X, Chen Y, Liu Y, Yang R, et al. 2018. Hierarchically structured cellulose aerogels with interconnected mxene networks and their enhanced microwave absorption properties. Journal of Materials Chemistry C 6(32):8679−8687

doi: 10.1039/c8tc02900h
[262]

Huang Y, Xie A, Seidi F, Zhu W, Li H, et al. 2021. Core-shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption. Chemical Engineering Journal 423:130307

doi: 10.1016/j.cej.2021.130307
[263]

Zhou X, Jia Z, Feng A, Wang X, Liu J, et al. 2019. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152:827−836

doi: 10.1016/j.carbon.2019.06.080
[264]

Xia C, Zhang S, Ren H, Shi S, Zhang H, et al. 2016. Scalable fabrication of natural-fiber reinforced composites with electromagnetic interference shielding properties by incorporating powdered activated carbon. Materials 9(1):10

doi: 10.3390/ma9010010
[265]

Zhang Y, Qu M, Zhang K, Liu W, Wang J, et al. 2025. Effect mechanisms of microwave on CO2 adsorption with cellulosic and non-cellulosic biochar. Separation and Purification Technology 373:133610

doi: 10.1016/j.seppur.2025.133610
[266]

Lv Q, Peng Z, Meng Y, Pei H, Chen Y, et al. 2022. Three-dimensional printing to fabricate graphene-modified polyolefin elastomer flexible composites with tailorable porous structures for electromagnetic interference shielding and thermal management application. Industrial & Engineering Chemistry Research 61(45):16733−16746

doi: 10.1021/acs.iecr.2c03086
[267]

Fan M, Chen R, Lu Y, Liu R, Ma Y, et al. 2022. Flexible microfibrillated cellulose/carbon nanotube multilayered composite films with electromagnetic interference shielding and thermal conductivity. Composites Communications 35:101293

doi: 10.1016/j.coco.2022.101293
[268]

Xie C, Wang Y, Wang W, Yu D. 2022. Flexible, conductive and multifunctional cotton fabric with surface wrinkled MXene/CNTs microstructure for electromagnetic interference shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 651:129713

doi: 10.1016/j.colsurfa.2022.129713
[269]

Ai Y, Xing R, Huang R, Kong J, Su R. 2024. Biomass-derived fire-retardant porous carbon towards efficient electromagnetic wave absorption and shielding. Carbon 227:119268

doi: 10.1016/j.carbon.2024.119268
[270]

Xie X, Zhang B, Wang Q, Zhao X, Wu D, et al. 2021. Efficient microwave absorber and supercapacitors derived from puffed-rice-based biomass carbon: effects of activating temperature. Journal of Colloid and Interface Science 594:290−303

doi: 10.1016/j.jcis.2021.03.025
[271]

Xia C, Shi SQ. 2016. Self-activation for activated carbon from biomass: theory and parameters. Green Chemistry 18(7):2063−2071

doi: 10.1039/c5gc02152a
[272]

Tian N, Lu BA, Yang XD, Huang R, Jiang YX, et al. 2018. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochemical Energy Reviews 1(1):54−83

doi: 10.1007/s41918-018-0004-1
[273]

Ali Abdelkareem M, Elsaid K, Wilberforce T, Kamil M, Sayed ET, et al. 2021. Environmental aspects of fuel cells: a review. Science of The Total Environment 752:141803

doi: 10.1016/j.scitotenv.2020.141803
[274]

Aizudin M, Goei R, Ong AJ, Tan YZ, Lua SK, et al. 2022. Sustainable development of graphitic carbon nanosheets from plastic wastes with efficient photothermal energy conversion for enhanced solar evaporation. Journal of Materials Chemistry A 10(37):19612−19617

doi: 10.1039/d2ta02092k
[275]

Zhu L, Shen D, Luo KH. 2020. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. Journal of Hazardous Materials 389:122102

doi: 10.1016/j.jhazmat.2020.122102
[276]

Rosli NHA, Lau KS, Winie T, Chin SX, Chia CH. 2021. Microwave-assisted reduction of graphene oxide for an electrochemical supercapacitor: structural and capacitance behavior. Materials Chemistry and Physics 262:124274

doi: 10.1016/j.matchemphys.2021.124274
[277]

Gopalakrishnan A, Badhulika S. 2020. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources 480:228830

doi: 10.1016/j.jpowsour.2020.228830
[278]

Joshi B, Samuel E, Kim YI, Yarin AL, Swihart MT, et al. 2022. Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coordination Chemistry Reviews 460:214466

doi: 10.1016/j.ccr.2022.214466
[279]

Khedulkar AP, Dang VD, Thamilselvan A, Doong RA, Pandit B. 2024. Sustainable high-energy supercapacitors: metal oxide-agricultural waste biochar composites paving the way for a greener future. Journal of Energy Storage 77:109723

doi: 10.1016/j.est.2023.109723
[280]

Guardia L, Suárez L, Querejeta N, Pevida C, Centeno TA. 2018. Winery wastes as precursors of sustainable porous carbons for environmental applications. Journal of Cleaner Production 193:614−624

doi: 10.1016/j.jclepro.2018.05.085
[281]

Sri Shalini S, Palanivelu K, Ramachandran A, Raghavan V. 2020. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Conversion and Biorefinery 11(5):2247−2267

doi: 10.1007/s13399-020-00604-5
[282]

Karnan M, Subramani K, Sudhan N, Ilayaraja N, Sathish M. 2016. Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Applied Materials & Interfaces 8(51):35191−35202

doi: 10.1021/acsami.6b10704
[283]

Deng J, Peng Z, Xiao Z, Song S, Dai H, et al. 2020. Porous doped carbons from anthracite for high-performance supercapacitors. Applied Sciences 10(3):1081

doi: 10.3390/app10031081
[284]

Okonkwo CA, Lv T, Hong W, Li G, Huang J, et al. 2020. The synthesis of micromesoporous carbon derived from nitrogen-rich spirulina extract impregnated castor shell based on biomass self-doping for highly efficient supercapacitor electrodes. Journal of Alloys and Compounds 825:154009

doi: 10.1016/j.jallcom.2020.154009
[285]

Song P, He X, Shen X, Sun Y, Li Z, et al. 2019. Dissolution-assistant all-in-one synthesis of N and S dual-doped porous carbon for high-performance supercapacitors. Advanced Powder Technology 30(10):2211−2217

doi: 10.1016/j.apt.2019.07.001
[286]

Peng L, Liang Y, Huang J, Xing L, Hu H, et al. 2019. Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemical energy storage. ACS Sustainable Chemistry & Engineering 7(12):10393−10402

doi: 10.1021/acssuschemeng.9b00477
[287]

Li C, Feng Y, Zhong F, Deng J, Yu T, et al. 2022. Optimization of microwave-assisted hydrothermal carbonization and potassium bicarbonate activation on the structure and electrochemical characteristics of crop straw-derived biochar. Journal of Energy Storage 55(D):105838

doi: 10.1016/j.est.2022.105838
[288]

Cheng BH, Tian K, Zeng RJ, Jiang H. 2017. Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy & Fuels 1(4):891−899

doi: 10.1039/c7se00029d
[289]

Li J, Jiang Q, Wei L, Zhong L, Wang X. 2020. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density. Journal of Materials Chemistry A 8(3):1469−1479

doi: 10.1039/c9ta07864a
[290]

Jin H, Wang X, Shen Y, Gu Z. 2014. A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors. Journal of Analytical and Applied Pyrolysis 110:18−23

doi: 10.1016/j.jaap.2014.07.010
[291]

Chen H, Wang G, Chen L, Dai B, Yu F. 2018. Three-dimensional honeycomb-like porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrode. Nanomaterials 8(6):412

doi: 10.3390/nano8060412
[292]

Tian X, Ma H, Li Z, Yan S, Ma L, et al. 2017. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. Journal of Power Sources 359:88−96

doi: 10.1016/j.jpowsour.2017.05.054
[293]

Fang K, Chen M, Chen J, Tian Q, Wong CP. 2019. Cotton stalk-derived carbon fiber@Ni-Al layered double hydroxide nanosheets with improved performances for supercapacitors. Applied Surface Science 475:372−379

doi: 10.1016/j.apsusc.2019.01.002
[294]

Zhang X, Yu Z, Ma X, Yi Y, Yue W, et al. 2024. Preparation of nitrogen-rich porous carbon by microwave-assisted two-step co-pyrolysis of kapok wood and chlorella vulgaris. Journal of Analytical and Applied Pyrolysis 179:106523

doi: 10.1016/j.jaap.2024.106523
[295]

Peng L, Cai Y, Luo Y, Yuan G, Huang J, et al. 2018. Bioinspired highly crumpled porous carbons with multidirectional porosity for high rate performance electrochemical supercapacitors. ACS Sustainable Chemistry & Engineering 6(10):12716−12726

doi: 10.1021/acssuschemeng.8b01839
[296]

Lei W, Yang B, Sun Y, Xiao L, Tang D, et al. 2021. Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage. Journal of Power Sources 488:229455

doi: 10.1016/j.jpowsour.2021.229455
[297]

Luo J, Zhang H, Zhang Z, Yu J, Yang Z. 2019. In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon 155:1−8

doi: 10.1016/j.carbon.2019.08.044
[298]

Jin H, Hu J, Wu S, Wang X, Zhang H, et al. 2018. Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. Journal of Power Sources 384:270−277

doi: 10.1016/j.jpowsour.2018.02.089
[299]

Charoensook K, Huang CL, Tai HC, Lanjapalli VVK, Chiang LM, et al. 2021. Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application. Journal of the Taiwan Institute of Chemical Engineers 120:246−256

doi: 10.1016/j.jtice.2021.02.021
[300]

Yang S, Wang S, Liu X, Li L. 2019. Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147:540−549

doi: 10.1016/j.carbon.2019.03.023
[301]

Li M, Xiao H, Zhang T, Li Q, Zhao Y. 2019. Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 7(5):4716−4723

doi: 10.1021/acssuschemeng.8b04607
[302]

Feng H, Hu H, Dong H, Xiao Y, Cai Y, et al. 2016. Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. Journal of Power Sources 302:164−173

doi: 10.1016/j.jpowsour.2015.10.063
[303]

Zhang S, Su Y, Zhu S, Zhang H, Zhang Q. 2018. Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application. Journal of Analytical and Applied Pyrolysis 135:22−31

doi: 10.1016/j.jaap.2018.09.026
[304]

Chen T, Luo L, Luo L, Deng J, Wu X, et al. 2021. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renewable Energy 175:760−769

doi: 10.1016/j.renene.2021.05.006
[305]

Song X, Ma X, Li Y, Ding L, Jiang R. 2019. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science 487:189−197

doi: 10.1016/j.apsusc.2019.04.277
[306]

Zhao C, Huang Y, Zhao C, Shao X, Zhu Z. 2018. Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochimica Acta 291:287−296

doi: 10.1016/j.electacta.2018.09.136
[307]

Wang X, Kong D, Zhang Y, Wang B, Li X, et al. 2016. All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 8:9146−9150

doi: 10.1039/c6nr01485b
[308]

Li S, Huang D, Zhang B, Xu X, Wang M, et al. 2014. Flexible supercapacitors based on bacterial cellulose paper electrodes. Advanced Energy Materials 4(10):1301655

doi: 10.1002/aenm.201301655
[309]

Tang YH, Liu SH, Tsang DCW. 2020. Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination. Journal of Hazardous Materials 383:121192

doi: 10.1016/j.jhazmat.2019.121192
[310]

Lu Q, Zhou S, Li B, Wei H, Zhang D, et al. 2020. Mesopore-rich carbon flakes derived from lotus leaves and it's ultrahigh performance for supercapacitors. Electrochimica Acta 333:135481

doi: 10.1016/j.electacta.2019.135481
[311]

Simon S, Harikumar P, Sreeja PB. 2025. Green power: the role of plant-based biochar in advanced energy storage. ChemPhysChem 26(1):e202400569

doi: 10.1002/cphc.202400569
[312]

Zhang Y, Gao H, Song X, Kong X, Xu H. 2019. Preparation of hierarchical porous carbon from wheat bran for free-standing electrode of high areal capacitance supercapacitor. ChemElectroChem 6(21):5486−5491

doi: 10.1002/celc.201901440
[313]

Thines KR, Abdullah EC, Ruthiraan M, Mubarak NM, Tripathi M. 2016. A new route of magnetic biochar based polyaniline composites for supercapacitor electrode materials. Journal of Analytical and Applied Pyrolysis 121:240−257

doi: 10.1016/j.jaap.2016.08.004
[314]

Jiang W, Li L, Pan J, Senthil RA, Jin X, et al. 2019. Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor. Journal of Power Sources 438:226936

doi: 10.1016/j.jpowsour.2019.226936
[315]

Zhang Y, Chen H, Wang S, Shao W, Qin W, et al. 2020. Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications. Industrial Crops and Products 151:112490

doi: 10.1016/j.indcrop.2020.112490
[316]

Shang T, Xu Y, Li P, Han J, Wu Z, et al. 2020. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 70:104531

doi: 10.1016/j.nanoen.2020.104531
[317]

Guo R, Guo N, Luo W, Xu M, Zhou D, et al. 2021. A dual-activation strategy to tailor the hierarchical porous structure of biomass-derived carbon for ultrahigh rate supercapacitor. International Journal of Energy Research 45(6):9284−9294

doi: 10.1002/er.6458
[318]

Wang J, Wu L, Shen L, Zhou Q, Chen Y, et al. 2023. CoO embedded porous biomass-derived carbon as dual-functional host material for lithium-sulfur batteries. Journal of Colloid and Interface Science 640:415−422

doi: 10.1016/j.jcis.2023.02.123
[319]

Nguyen TKA, Huynh TV, Doong RA. 2023. Enhanced capacitive deionization of Cr(VI) using functionalized metal carbide 2D framework and badam tree leaf-derived carbon as the asymmetric electrode materials. Chemical Engineering Journal 475:146439

doi: 10.1016/j.cej.2023.146439
[320]

Liu SH, Tang YH. 2020. Hierarchically porous biocarbons prepared by microwave-aided carbonization and activation for capacitive deionization. Journal of Electroanalytical Chemistry 878:114587

doi: 10.1016/j.jelechem.2020.114587
[321]

Inal IIG, Holmes SM, Yagmur E, Ermumcu N, Banford A, et al. 2018. The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry 61:124−132

doi: 10.1016/j.jiec.2017.12.009
[322]

Liu Y, Pan L, Chen T, Xu X, Lu T, et al. 2015. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta 151:489−496

doi: 10.1016/j.electacta.2014.11.086
[323]

Adorna J, Borines M, Dang VD, Doong RA. 2020. Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization. Desalination 492:114602

doi: 10.1088/1757-899X/778/1/012161
[324]

Liu C, Chen W, Li M, Hong S, Li W, et al. 2019. Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Advances 9(34):19441−19449

doi: 10.1039/c9ra03031j
[325]

Chen D, Li L, Xi Y, Li J, Lu M, et al. 2018. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta 286:264−270

doi: 10.1016/j.electacta.2018.08.030
[326]

Li D, Lin J, Lu Y, Huang Y, He X, et al. 2020. MnO2 nanosheets grown on N-doped agaric-derived three-dimensional porous carbon for asymmetric supercapacitors. Journal of Alloys and Compounds 815:152344

doi: 10.1016/j.jallcom.2019.152344