[1]

Sun J, Tan L, Guo A, Wang X, Wang W, et al. 2025. Biogas conversion of forestry waste enhanced by compound microbial pretreatment: microbial and metabolomic insights during anaerobic digestion. Journal of Environmental Chemical Engineering 13:119288

doi: 10.1016/j.jece.2025.119288
[2]

Adams M. 2024. Ammonia-stressed anaerobic digestion: sensitivity dynamics of key syntrophic interactions and methanogenic pathways-a review. Journal of Environmental Management 371:123183

doi: 10.1016/j.jenvman.2024.123183
[3]

Yang J, Zhang J, Du X, Gao T, Cheng Z, et al. 2025. Ammonia inhibition in anaerobic digestion of organic waste: a review. International Journal of Environmental Science and Technology 22:3927−3942

doi: 10.1007/s13762-024-06029-1
[4]

James A, Li M, Mazarji M, Li A, Li Y, et al. 2025. Coupling electron bifurcation and interspecies electron transfer to mitigate ammonia and acids inhibition. Renewable and Sustainable Energy Reviews 210:115166

doi: 10.1016/j.rser.2024.115166
[5]

Li ZY, Inoue D, Ike M. 2023. Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: a review. Journal of Water Process Engineering 52:103506

doi: 10.1016/j.jwpe.2023.103506
[6]

Liu Z, Foong SY, Zhang Y, Li Y, Hu B, et al. 2025. Proactive detection, prediction, and control of instabilities in anaerobic digestion systems. Renewable and Sustainable Energy Reviews 224:116101

doi: 10.1016/j.rser.2025.116101
[7]

Li J, Zhang Y, Zou R, Sun W, An W, et al. 2025. Ammonia inhibition in anaerobic digestion and weakly electrical stimulation strategies: exploring mitigation mechanisms and economic benefits-a review. Bioresource Technology 437:133068

doi: 10.1016/j.biortech.2025.133068
[8]

Koster IW. 1986. Characteristics of the pH-influenced adaptation of methanogenic sludge to ammonium toxicity. Journal of Chemical Technology & Biotechnology 36:445−455

doi: 10.1002/jctb.280361003
[9]

Jiang Y, McAdam E, Zhang Y, Heaven S, Banks C, et al. 2019. Ammonia inhibition and toxicity in anaerobic digestion: a critical review. Journal of Water Process Engineering 32:100899

doi: 10.1016/j.jwpe.2019.100899
[10]

Li MT, Rao L, Wang L, Gou M, Sun ZY, et al. 2022. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge. Chemosphere 288:132389

doi: 10.1016/j.chemosphere.2021.132389
[11]

Salangsang MCD, Sekine M, Akizuki SI, Bhatia P, Toda T. 2024. pH adjustment alleviates ammonia inhibition of cell proliferation during a short resting period in semi-continuous anaerobic digestion of food waste. BioEnergy Research 18:4

doi: 10.1007/s12155-024-10804-w
[12]

Li P, Wang Y, Cheng C, Liu X, He C, et al. 2025. Investigation of interactions among major biomass components during anaerobic digestion under pH-adjustment conditions. Journal of Environmental Chemical Engineering 13:115667

doi: 10.1016/j.jece.2025.115667
[13]

Sillero L, Solera R, Perez M. 2024. Effect of temperature and bagasse addition on anaerobic co-digestion of brewery waste by biochemical methane potential test. Fuel 357:129737

doi: 10.1016/j.fuel.2023.129737
[14]

Qiu Y, Johnson Z, Zuo S, Gu X, Bohutskyi P, et al. 2025. Enhanced lignocellulose hydrolysis and controlled biogas-to-platform chemical switching through temperature-driven microbial specialization in hyperthermophilic anaerobic digestion. Chemical Engineering Journal 525:170235

doi: 10.1016/j.cej.2025.170235
[15]

Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environmental Technology 20:355−365

doi: 10.1080/09593332008616828
[16]

Kadam PC, Boone DR. 1996. Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Applied and Environmental Microbiology 62(12):4486−4492

doi: 10.1128/aem.62.12.4486-4492.1996
[17]

Wang Z, Yin Q, Wu G. 2024. Ammonia-induced inhibition and its alleviation strategies in anaerobic digestion ecosystems In Anaerobic Digestion, ed. Wu G. Cham: Springer. pp. 97–116 doi: 10.1007/978-3-031-69378-6_6

[18]

Yu D, Zhang Q, De Jaegher B, Liu J, Sui Q, et al. 2021. Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress. Bioresource Technology 319:124118

doi: 10.1016/j.biortech.2020.124118
[19]

Liu C, Huang H, Duan X, Chen Y. 2021. Integrated metagenomic and metaproteomic analyses unravel ammonia toxicity to active methanogens and syntrophs, enzyme synthesis, and key enzymes in anaerobic digestion. Environmental Science & Technology 55:14817−14827

doi: 10.1021/acs.est.1c00797
[20]

Liu F, Zhang Y, Zhang Y, Yang J, Shen W, et al. 2024. Thermodynamic restrictions determine ammonia tolerance of functional floras during anaerobic digestion. Bioresource Technology 391:129919

doi: 10.1016/j.biortech.2023.129919
[21]

Müller N, Worm P, Schink B, Stams AJM, Plugge CM. 2010. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environmental Microbiology Reports 2:489−499

doi: 10.1111/j.1758-2229.2010.00147.x
[22]

Jin HY, He ZW, Ren YX, Tang CC, Zhou AJ, et al. 2022. Role of extracellular polymeric substances in methane production from waste activated sludge induced by conductive materials. Science of The Total Environment 853:158510

doi: 10.1016/j.scitotenv.2022.158510
[23]

Fu S, Lian S, Angelidaki I, Guo R. 2023. Micro-aeration: an attractive strategy to facilitate anaerobic digestion. Trends in Biotechnology 41:714−726

doi: 10.1016/j.tibtech.2022.09.008
[24]

Liu C, Zhang X, Chen C, Yin Y, Zhao G, et al. 2023. Physiological responses of Methanosarcina barkeri under ammonia stress at the molecular level: the unignorable lipid reprogramming. Environmental Science & Technology 57:3917−3929

doi: 10.1021/acs.est.2c09631
[25]

Beraud-Martínez LK, Betancourt-Lozano M, Gómez-Gil B, Asaff-Torres A, Monroy-Hermosillo OA, et al. 2024. Methylotrophic methanogenesis induced by ammonia nitrogen in an anaerobic digestion system. Anaerobe 88:102877

doi: 10.1016/j.anaerobe.2024.102877
[26]

Karki R, Chuenchart W, Surendra KC, Shrestha S, Raskin L, et al. 2021. Anaerobic co-digestion: current status and perspectives. Bioresource Technology 330:125001

doi: 10.1016/j.biortech.2021.125001
[27]

He H, Zhang Z, Ma S, Khan MU, Peng Z, et al. 2025. Mitigation of ammonia inhibition in dry anaerobic digestion of chicken manure and corn straw using a self-developed gradient anaerobic digestion reactor. Energy 332:137256

doi: 10.1016/j.energy.2025.137256
[28]

Sun H, Tang R, Su K, Yuan S, Feng J, et al. 2024. Effect of zero-valent iron addition on ammonia inhibition alleviation and fecal indicators reduction in anaerobic digestion of pig manure. Biochemical Engineering Journal 205:109276

doi: 10.1016/j.bej.2024.109276
[29]

Song Y, Qiao W, Westerholm M, Zhou Y, Dong R. 2024. High rate methanogenesis and nitrogenous component transformation in the high-solids anaerobic digestion of chicken manure enhanced by biogas recirculation ammonia stripping. Chemical Engineering Journal 498:155744

doi: 10.1016/j.cej.2024.155744
[30]

Bae I, Rhee C, Shin J, Cho K, Triolo JM, et al. 2025. Insights into high ammonia-resistant syntrophic microbiomes and metabolic pathways during continuous anaerobic digestion of cow manure. Bioresource Technology 422:132235

doi: 10.1016/j.biortech.2025.132235
[31]

Khadir A, Haroun B, Jang E, Santoro D, Walton J, et al. 2025. Methane production and microbial adaptation in high-load vacuum-enhanced anaerobic digestion: addressing ammonia and propionate toxicity. Chemical Engineering Journal 509:161105

doi: 10.1016/j.cej.2025.161105
[32]

Jia Z, Ye X, Liu Y, Wang C, Cao C, et al. 2023. Metal–organic framework-derived porous metal oxide/graphene nanocomposites as effective adsorbents for mitigating ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic waste. Fuel 332:126032

doi: 10.1016/j.fuel.2022.126032
[33]

Haroun B, El-Qelish M, Abdulazeez M, Khalil A, Kim M, et al. 2025. Overcoming ammonia inhibition via biochar-assisted anaerobic co-digestion of thermally-treated thickened waste activated sludge and food waste. Journal of Environmental Management 373:123909

doi: 10.1016/j.jenvman.2024.123909
[34]

Xiao Y, Yang H, Jiang X, Wang W, Deng L. 2025. Mitigation of ammonia and volatile fatty acids inhibition in dry anaerobic digestion of chicken manure by biochar prepared at varying pyrolysis temperatures. Bioresource Technology 428:132465

doi: 10.1016/j.biortech.2025.132465
[35]

Zhang L, Tsui TH, Tong YW, Aggarangsi P, Liu R. 2024. Applying current-carrying-coil-based magnetic field (CCC-MF) to promote anaerobic digestion of chicken manure: performance evaluation, mitigation of ammonia inhibition, microbial community analysis, and pilot-scale validation. Energy Conversion and Management 300:117908

doi: 10.1016/j.enconman.2023.117908
[36]

Wang S, Wang Z, Usman M, Zheng Z, Zhao X, et al. 2023. Two microbial consortia obtained through purposive acclimatization as biological additives to relieve ammonia inhibition in anaerobic digestion. Water Research 230:119583

doi: 10.1016/j.watres.2023.119583
[37]

Ye M, Gao S, Wang P, Wei Y, Hou J, et al. 2025. Life cycle assessment of anaerobic digestion system under ammonia inhibition: evaluation of exogenous media addition. Biochemical Engineering Journal 223:109886

doi: 10.1016/j.bej.2025.109886
[38]

Li Y, Yin DM, Du XJ, Li HX, Zhang XY, et al. 2024. Genome-centric metagenomics and methanogenic pathway analysis for acclimated anaerobic digestion of chicken manure with high ammonia stressed under thermophilic condition. Environmental Research 258:119453

doi: 10.1016/j.envres.2024.119453
[39]

Chen S, Kong Z, Qiu L, Wang H, Yan Q. 2025. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation. Environmental Research 264:120295

doi: 10.1016/j.envres.2024.120295
[40]

Su J, Lv W, Ren L, Kong X, Luo L, et al. 2023. Effect of water regime on the dynamics of free ammonia during high solid anaerobic digestion of pig manure. Chemosphere 312:137328

doi: 10.1016/j.chemosphere.2022.137328
[41]

Shao Z, Fan Q, Gao F, Xia T, Wang Y, et al. 2025. Sustained methane production enhancement by magnetic biochar and its recovery in semi-continuous anaerobic digestion with varying substrate C/N ratios. Chemical Engineering Journal 514:163050

doi: 10.1016/j.cej.2025.163050
[42]

da Silva JFF, Tápparo DC, Lazaroto AC, de Asis DB, Sophiatti IVM, et al. 2025. Enhancing anaerobic digestion of nitrogen-rich substrates through in situ ammonia recovery using tubular gas-permeable membranes. Bioresource Technology 437:133063

doi: 10.1016/j.biortech.2025.133063
[43]

Nkuna R, Roopnarain A, Rashama C, Adeleke R. 2022. Insights into organic loading rates of anaerobic digestion for biogas production: a review. Critical Reviews in Biotechnology 42:487−507

doi: 10.1080/07388551.2021.1942778
[44]

Perez-Esteban N, Vives-Egea J, Dosta J, Astals S, Peces M. 2024. Resilience towards organic load and activated sludge variations in co-fermentation for carboxylic acid production. Bioresource Technology 406:131034

doi: 10.1016/j.biortech.2024.131034
[45]

Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. 2021. Environmental stress destabilizes microbial networks. The ISME Journal 15:1722−1734

doi: 10.1038/s41396-020-00882-x
[46]

Yang P, Peng Y, Tan H, Liu H, Wu D, et al. 2021. Foaming mechanisms and control strategies during the anaerobic digestion of organic waste: a critical review. Science of The Total Environment 779:146531

doi: 10.1016/j.scitotenv.2021.146531
[47]

Lindmark J, Thorin E, Fdhila RB, Dahlquist E. 2014. Effects of mixing on the result of anaerobic digestion: review. Renewable and Sustainable Energy Reviews 40:1030−1047

doi: 10.1016/j.rser.2014.07.182
[48]

Ajayi O, Olalusi AP, Olarenwaju OO, Ikhazuagbe HI, Olugbemide AD. 2024. Enhancing energy efficiency and mitigating environmental degradation through anaerobic co-digestion of palm oil mill effluent and solid residues. Journal of Applied Sciences and Environmental Management 28:2873−2878

doi: 10.4314/jasem.v28i9.33
[49]

Miramontes-Martínez LR, Rivas-García P, Albalate-Ramírez A, Botello-Álvarez JE, Escamilla-Alvarado C, et al. 2021. Anaerobic co-digestion of fruit and vegetable waste: synergy and process stability analysis. Journal of the Air & Waste Management Association 71:620−632

doi: 10.1080/10962247.2021.1873206
[50]

Zhou TT, Huang SY, Wang JY, Ahmad S, Zhao QB, et al. 2015. A two-stage stripping treatment of anaerobic digestion effluent for ammonia recovery and scale prevention. Journal of Water Process Engineering 75:107917

doi: 10.1016/j.jwpe.2025.107917
[51]

Mazhar abbas HM, Sultan H, Shah A, Tahir A, Iltaf H, et al. 2026. The role of biochar as a microbial carrier in enhancing biogas production efficiency in anaerobic digestion systems. Renewable and Sustainable Energy Reviews 226:116335

doi: 10.1016/j.rser.2025.116335
[52]

Xu J, Kumar Khanal S, Kang Y, Zhu J, Huang X, et al. 2022. Role of interspecies electron transfer stimulation in enhancing anaerobic digestion under ammonia stress: mechanisms, advances, and perspectives. Bioresource Technology 360:127558

doi: 10.1016/j.biortech.2022.127558
[53]

Liu J, Zheng J, Niu Y, Zuo Z, Zhang J, et al. 2020. Effect of zero-valent iron combined with carbon-based materials on the mitigation of ammonia inhibition during anaerobic digestion. Bioresource Technology 311:123503

doi: 10.1016/j.biortech.2020.123503
[54]

Lu W, Deng G, Cheng X,Wang W. 2022. Effects of iron-loaded biochar on the anaerobic co-digestion of food waste and sewage sludge and elucidating the mechanism thereof. Sustainability 14:9442

doi: 10.3390/su14159442
[55]

Zheng Z, Bao M, Huo W, Shao Y, Lu W, et al. 2025. Quick start of dry anaerobic digestion of kitchen waste using semi-continues horizontal plug-flow system. Renewable Energy 255:123819

doi: 10.1016/j.renene.2025.123819
[56]

Zheng Y, Wang J, Niu X, Su X, He X, et al. 2025. Ferrihydrite enhance performance in anaerobic digestion of pig manure: methane production, feammox and metabolic pathway. Journal of Water Process Engineering 72:107621

doi: 10.1016/j.jwpe.2025.107621
[57]

Li J, Xu X, Chen C, Xu L, Du Z, et al. 2023. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: microbial response and metagenomics analysis. Environmental Research 227:115779

doi: 10.1016/j.envres.2023.115779
[58]

Liang M, Qin X, Chang Q, Wang C, Guo G, et al. 2023. Achieving efficient methane production from protein-rich organic waste in anaerobic digestion: using conductive materials or regulating inoculum-to-substrate ratios? Bioresource Technology 385:129473

doi: 10.1016/j.biortech.2023.129473
[59]

Zhu D, Wang Z, Liu K, Si B, Yang G, et al. 2023. Multi-cycle anaerobic digestion of hydrothermal liquefaction aqueous phase: role of carbon and iron based conductive materials in inhibitory compounds degradation, microbial structure shaping, and interspecies electron transfer regulation. Chemical Engineering Journal 454:140019

doi: 10.1016/j.cej.2022.140019
[60]

Din Muhammad Z, Yahya NY, Abd Aziz A. 2025. Improving anaerobic digestion of food waste by iron containing additives for ammonia adsorption and biogas production. Cleaner Chemical Engineering 12:100211

doi: 10.1016/j.clce.2025.100211
[61]

Morais NWS, da Silva MVDA, do Nascimento RGN, dos Santos AB. 2025. Effect of electron-conducting materials, substrate-inoculum ratio, and temperature on swine wastewater anaerobic digestion. Journal of Water Process Engineering 78:108828

doi: 10.1016/j.jwpe.2025.108828
[62]

Liu Z, Zhu Y, Sun M, An G, Yang J, et al. 2025. Synergy of Fe-modified zeolite and light stimulation on ammonia-stressed anaerobic digestion: performance, microbial community and metabolic pathway. Chemical Engineering Journal 506:159959

doi: 10.1016/j.cej.2025.159959
[63]

Wang X, Chen X, Sun Y, Fan W, Yuan H, et al. 2025. Multivariate insights into enhanced performance in two-phase high solid anaerobic digestion of food waste via conductive materials: substance conversion, microbial communities, and metagenomic analyses. Biochemical Engineering Journal 215:109625

doi: 10.1016/j.bej.2024.109625
[64]

Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, et al. 2024. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. Water Research 255:121503

doi: 10.1016/j.watres.2024.121503
[65]

Wei Q, Hu Y, Fu N, Zhang X, Shen Q. 2025. Improving semi-thermophilic anaerobic digestion of kitchen waste by iron-carbon materials regulation: insights from energy supply and genetic information processing. Process Safety and Environmental Protection 203:107971

doi: 10.1016/j.psep.2025.107971
[66]

Hu Y, Zhang X, Shen Q, Mu H, Zhang S. 2025. Deciphering the roles of red mud pretreatment on high-solid semi-continuous anaerobic digestion of kitchen waste: performance and mechanisms. Journal of Environmental Chemical Engineering 13:119492

doi: 10.1016/j.jece.2025.119492
[67]

Liu Y, Ying L, Li H, Awasthi MK, Tian D, et al. 2024. Allophane improves anaerobic digestion of chicken manure by alleviating ammonia inhibition and intensifying direct interspecies electron transfer. Bioresource Technology 400:130692

doi: 10.1016/j.biortech.2024.130692
[68]

Sánchez E, Herrmann C, Maja W, Borja R. 2021. Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. Environmental Science and Pollution Research 28:38455−38465

doi: 10.1007/s11356-021-13428-1
[69]

Yan W, Mukherjee M, Zhou Y. 2020. Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition–reevaluate the role of conductive materials. Water Research 183:116094

doi: 10.1016/j.watres.2020.116094
[70]

Wang Z, Wang S, Hu Y, Du B, Meng J, et al. 2022. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. Water Research 224:119029

doi: 10.1016/j.watres.2022.119029
[71]

Ye W, Li L, Tang Z, Peng Y, Yang P, et al. 2024. Biochar and modified magnetic biochar enhanced anaerobic digestion of swine wastewater under ammonia stress: performance and microbial dynamics. Journal of Environmental Chemical Engineering 12:111969

doi: 10.1016/j.jece.2024.111969
[72]

Li Y, Zhang J, Wen X, Mazarji M, Chen S, et al. 2024. Advancing anaerobic digestion with MnO2-modified biochar: insights into performance and mechanisms. Science of The Total Environment 954:176303

doi: 10.1016/j.scitotenv.2024.176303
[73]

Rocamora I, Wagland ST, Hassard F, Villa R, Peces M, et al. 2025. Supplementation strategies to control propionic acid accumulation resulting from ammonia inhibition in dry anaerobic digestion: Osmoprotectants, activated carbon and trace elements. Journal of Environmental Chemical Engineering 13:116015

doi: 10.1016/j.jece.2025.116015
[74]

Tian H, Mancini E, Treu L, Angelidaki I, Fotidis IA. 2019. Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate. Chemosphere 231:415−422

doi: 10.1016/j.chemosphere.2019.05.140
[75]

Li Y, Zhang Y, Sun Y, Wu S, Kong X, et al. 2017. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresource Technology 231:94−100

doi: 10.1016/j.biortech.2017.01.068
[76]

Yang Z, Wang W, Liu C, Zhang R, Liu G. 2019. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: selection of strains and reactor performance evaluation. Water Research 155:214−224

doi: 10.1016/j.watres.2019.02.048
[77]

Li C, Lü F, Peng W, He P, Zhang H. 2024. Efficacy of bioaugmentation with nondomesticated mixed microbial consortia under ammonia inhibition in anaerobic digestion. Bioresource Technology 391:129954

doi: 10.1016/j.biortech.2023.129954
[78]

Chen L, He P, Zou J, Zhang H, Peng W, et al. 2025. Scalable and interpretable automated machine learning framework for biogas prediction, optimization, and stability monitoring in industrial-scale dry anaerobic digestion. Chemical Engineering Journal 519:165482

doi: 10.1016/j.cej.2025.165482
[79]

Lovley DR. 2017. Syntrophy goes electric: direct interspecies electron transfer. Annual Review of Microbiology 71:643−664

doi: 10.1146/annurev-micro-030117-020420
[80]

Wang Y, Li H, Ding K, Zhao X, Liu M, et al. 2025. Improved anaerobic digestion of food waste under ammonia stress by side-stream hydrogen domestication. Water Research 268:122770

doi: 10.1016/j.watres.2024.122770
[81]

Collins BA, Birzer CH, Kidd SP, Hall T, Medwell PR. 2025. The influence of biochar pyrolysis temperature on anaerobic digestion of chicken litter in a leach bed coupled to a biochar filter. Bioresource Technology Reports 31:102219

doi: 10.1016/j.biteb.2025.102219
[82]

Rivera F, Villarreal L, Prádanos P, Hernández A, Palacio L, et al. 2025. Innovative ammonia recovery and biogas enhancement via direct contact membrane distillation in thermophilic anaerobic digestion of mixed sludge. Journal of Water Process Engineering 76:108193

doi: 10.1016/j.jwpe.2025.108193
[83]

Jia R, Song YC, Piao DM, Kim K, Lee CY, et al. 2022. Exploration of deep learning models for real-time monitoring of state and performance of anaerobic digestion with online sensors. Bioresource Technology 363:127908

doi: 10.1016/j.biortech.2022.127908
[84]

Long F, Wang L, Cai W, Lesnik K, Liu H. 2021. Predicting the performance of anaerobic digestion using machine learning algorithms and genomic data. Water Research 199:117182

doi: 10.1016/j.watres.2021.117182
[85]

Yu SI, Jeong H, Shin J, Shin SG, Abbas A, et al. 2024. Simulation models of microbial community, pH, and volatile fatty acids of anaerobic digestion developed by machine learning. Journal of Water Process Engineering 60:105225

doi: 10.1016/j.jwpe.2024.105225
[86]

Ge Y, Tao J, Wang Z, Mu L, Guo W, et al. 2024. A hybrid approach of anaerobic digestion model No. 1 and machine learning to model and optimize continuous anaerobic digestion processes. Biomass and Bioenergy 184:107176

doi: 10.1016/j.biombioe.2024.107176
[87]

Ullah W, Alsaiari M, Jalalah M, Harraz FA, Thakur N, et al. 2025. Digestibility, microbiome dynamics, and biogas generation in anaerobic digestion with integrated additives and artificial intelligence. Environmental Research 285:122640

doi: 10.1016/j.envres.2025.122640
[88]

Lian Q, Qi J, Huang D, Song W, Yuan J. 2025. Carbon to nitrogen ratio and organic loading rate optimization of sewage sludge and rice straw: economic analysis and anaerobic digestion process understandings through machine learning. Energy 330:136789

doi: 10.1016/j.energy.2025.136789
[89]

Ding C, Zhang Y, Li X, Liu Q, Li Y, et al. 2023. Strategy to enhance the semicontinuous anaerobic digestion of food waste via exogenous additives: experimental and machine learning approaches. RSC Advances 13:35349−35358

doi: 10.1039/d3ra05811e
[90]

Zou J, Lü F, Chen L, Zhang H, He P. 2024. Machine learning for enhancing prediction of biogas production and building a VFA/ALK soft sensor in full-scale dry anaerobic digestion of kitchen food waste. Journal of Environmental Management 371:123190

doi: 10.1016/j.jenvman.2024.123190
[91]

Zhuang L, Ma J, Yu Z, Wang Y, Tang J. 2018. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations. Microbial Biotechnology 11:710−720

doi: 10.1111/1751-7915.13286
[92]

Indren M, Birzer CH, Kidd SP, Hall T, Medwell PR. 2020. Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion. Bioresource Technology 298:122457

doi: 10.1016/j.biortech.2019.122457
[93]

Yan W, Lu D, Liu J, Zhou Y. 2019. The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chemical Engineering Journal 372:332−340

doi: 10.1016/j.cej.2019.04.163
[94]

Hai R, Wang Y, Wang X, Du Z, Li Y. 2014. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One 9:e107345

doi: 10.1371/journal.pone.0107345
[95]

Buan NR. 2018. Methanogens: pushing the boundaries of biology. Emerging Topics in Life Sciences 2:629−646

doi: 10.1042/etls20180031
[96]

Zhang P, Zhang J, Zhang T, Zhang L, He Y. 2024. Zero-valent iron enhanced methane production of anaerobic digestion by reinforcing microbial electron bifurcation coupled with direct inter-species electron transfer. Water Research 255:121428

doi: 10.1016/j.watres.2024.121428
[97]

James A, Li M, Li A, Zeng W, Fu S, et al. 2026. Obscure quorum sensing-mediated modulations facilitating enhanced biogas production. Renewable and Sustainable Energy Reviews 226:116331

doi: 10.1016/j.rser.2025.116331
[98]

Lv C, Man S, Abd-Alla MH, Wang H, Yan Q. 2025. Effects of improved quorum sensing signaling system by iron-modified biochar on alleviation of ammonia inhibition during biomethanation. Journal of Environmental Chemical Engineering 13:116843

doi: 10.1016/j.jece.2025.116843
[99]

Yellezuome D, Zhu X, Wang Z, Liu R. 2022. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: a review. Renewable and Sustainable Energy Reviews 157:112043

doi: 10.1016/j.rser.2021.112043
[100]

Li J, Zhang L, Xu Q, Zhang W, Li Z, et al. 2022. CRISPR-Cas9 toolkit for genome editing in an autotrophic CO2-fixing methanogenic archaeon. Microbiology Spectrum 10:e01165-22

doi: 10.1128/spectrum.01165-22
[101]

Bao J, de Dios Mateos E, Scheller S. 2022. Efficient CRISPR/Cas12a-based genome-editing toolbox for metabolic engineering in Methanococcus maripaludis. ACS Synthetic Biology 11:2496−2503

doi: 10.1021/acssynbio.2c00137