[1]

Ansari FA, Nasr M, Guldhe A, Gupta SK, Rawat I, et al. 2020. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: a commercial-scale application. Science of The Total Environment 704:135259

doi: 10.1016/j.scitotenv.2019.135259
[2]

Shahbaz M, AlNouss A, Ghiat I, McKay G, MacKey H, et al. 2021. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling 173:105734

doi: 10.1016/j.resconrec.2021.105734
[3]

CO2·earth. 2023. CO2·earth. www.co2.earth/daily-co2

[4]

Xu X, Moulijn JA. 1996. Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy & Fuels 10:305−325

doi: 10.1021/ef9501511
[5]

Pelto MS. 2008. Impact of climate change on north cascade alpine glaciers, and alpine runoff. Northwest Science 82:65−75

doi: 10.3955/0029-344X-82.1.65
[6]

Haaf M, Anantharaman R, Roussanaly S, Ströhle J, Epple B. 2020. CO2 capture from waste-to-energy plants: techno-economic assessment of novel integration concepts of calcium looping technology. Resources, Conservation and Recycling 162:104973

doi: 10.1016/j.resconrec.2020.104973
[7]

Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A. 2016. Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews 53:1333−1347

doi: 10.1016/j.rser.2015.09.030
[8]

Aboagye PD, Sharifi A. 2024. Urban climate adaptation and mitigation action plans: a critical review. Renewable and Sustainable Energy Reviews 189:113886

doi: 10.1016/j.rser.2023.113886
[9]

Bouter A, Hurtig O, Besseau R, Buffi M, Kulisic B, et al. 2025. Updating the greenhouse gas emissions of liquid biofuels from Annex V of the Renewable Energy Directive II (RED II): an overview. Biomass and Bioenergy 199:107886

doi: 10.1016/j.biombioe.2025.107886
[10]

Marquardt W, Harwardt A, Hechinger M, Kraemer K, Viell J, et al. 2010. The biorenewables opportunity - toward next generation process and product systems. AIChE Journal 56:2228−2235

doi: 10.1002/aic.12380
[11]

Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238−1240

doi: 10.1126/science.1151861
[12]

Kabir Z, Yusuf MA, Khan I. 2021. An overview of policy framework and measures promoting bioenergy usage in the EU, the United States, and Canada. In Bioenergy Resources and Technologies, eds Azad AK, Khan MMK. Amsterdam: Academic Press. pp. 383−421 doi: 10.1016/B978-0-12-822525-7.00015-9

[13]

Detsios N, Theodoraki S, Maragoudaki L, Atsonios K, Grammelis P, et al. 2023. Recent advances on alternative aviation fuels/pathways: a critical review. Energies 16:1904

doi: 10.3390/en16041904
[14]

EPA. 2024. Overview of the renewable fuel standard program. www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard-program

[15]

Zhang P, Yang Y, Shi J, Zheng Y, Wang L, et al. 2018. Opportunities and challenges for renewable energy policy in China. In Renewable Energy, ed. Sorensen B. London: Routledge. pp. 486−503 doi: 10.4324/9781315793245-150

[16]

Venditti B. 2024. Visualizing Global Energy Production in 2023. Energy Institute. https://elements.visualcapitalist.com/visualizing-global-energy-production-in-2023/

[17]

Kargbo H, Harris JS, Phan AN. 2021. "Drop-in" fuel production from biomass: critical review on techno-economic feasibility and sustainability. Renewable and Sustainable Energy Reviews 135:110168

doi: 10.1016/j.rser.2020.110168
[18]

Zhang C, Fu R, Kang L, Ma Y, Fan D, et al. 2024. An upcycling bioprocess for sustainable aviation fuel production from food waste-derived greenhouse gases: life cycle assessment and techno-economic analysis. Chemical Engineering Journal 486:150242

doi: 10.1016/j.cej.2024.150242
[19]

Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AH, et al. 2021. Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters 19:4075−4118

doi: 10.1007/s10311-021-01273-0
[20]

Ziyadi M, Al-Qadi IL. 2019. Model uncertainty analysis using data analytics for life-cycle assessment (LCA) applications. The International Journal of Life Cycle Assessment 24:945−959

doi: 10.1007/s11367-018-1528-7
[21]

Kaloudas D, Pavlova N, Penchovsky R. 2021. Lignocellulose, algal biomass, biofuels and biohydrogen: a review. Environmental Chemistry Letters 19:2809−2824

doi: 10.1007/s10311-021-01213-y
[22]

Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. 2014. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128:162−169

doi: 10.1016/j.fuel.2014.02.074
[23]

Li S, Xu S, Liu S, Yang C, Lu Q. 2004. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 85:1201−1211

doi: 10.1016/j.fuproc.2003.11.043
[24]

Onay O. 2007. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology 88:523−531

doi: 10.1016/j.fuproc.2007.01.001
[25]

Moralı U, Yavuzel N, Şensöz S. 2016. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresource Technology 221:682−685

doi: 10.1016/j.biortech.2016.09.081
[26]

Ahmed TY, Ahmad MM, Yusup S, Inayat A, Khan Z. 2012. Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renewable and Sustainable Energy Reviews 16:2304−2315

doi: 10.1016/j.rser.2012.01.035
[27]

Danso-Boateng E, Achaw OW. 2022. Bioenergy and biofuel production from biomass using thermochemical conversions technologies—a review. AIMS Energy 10:585−647

doi: 10.3934/energy.2022030
[28]

Adeniyi AG, Iwuozor KO, Emenike EC, Ajala OJ, Ogunniyi S, et al. 2024. Thermochemical co-conversion of biomass-plastic waste to biochar: a review. Green Chemical Engineering 5:31−49

doi: 10.1016/j.gce.2023.03.002
[29]

Balat H, Kırtay E. 2010. Hydrogen from biomass–present scenario and future prospects. International Journal of Hydrogen Energy 35:7416−7426

doi: 10.1016/j.ijhydene.2010.04.137
[30]

Shahzad HMA, Asim Z, Khan SJ, Almomani F, Mahmoud KA, et al. 2024. Thermochemical and biochemical conversion of agricultural waste for bioenergy production: an updated review. Discover Environment 2:134

doi: 10.1007/s44274-024-00171-w
[31]

Adeniyi AG, Iwuozor KO, Emenike EC, Amoloye MA, Adeleke JA, et al. 2024. Leaf-based biochar: a review of thermochemical conversion techniques and properties. Journal of Analytical and Applied Pyrolysis 177:106352

doi: 10.1016/j.jaap.2024.106352
[32]

Ighalo JO. 2024. Biowastes and derived green sorbents for water decontamination: insights on thermochemical conversion strategies. Current Opinion in Green and Sustainable Chemistry 45:100880

doi: 10.1016/j.cogsc.2024.100880
[33]

Jha S, Okolie JA, Nanda S, Dalai AK. 2022. A review of biomass resources and thermochemical conversion technologies. Chemical Engineering & Technology 45:791−799

doi: 10.1002/ceat.202100503
[34]

Muh E, Tabet F, Amara S. 2021. Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes. Current Alternative Energy 4:3−25

doi: 10.2174/2405463103666191022121648
[35]

Lee D, Nam H, Seo MW, Lee SH, Tokmurzin D, et al. 2022. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chemical Engineering Journal 447:137501

doi: 10.1016/j.cej.2022.137501
[36]

Das P, Chandramohan V, Mathimani T, Pugazhendhi A. 2021. Recent advances in thermochemical methods for the conversion of algal biomass to energy. Science of The Total Environment 766:144608

doi: 10.1016/j.scitotenv.2020.144608
[37]

Lewandowski WM, Ryms M, Kosakowski W. 2020. Thermal biomass conversion: a review. Processes 8:516

doi: 10.3390/pr8050516
[38]

Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M. 2018. Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Conversion and Management 165:696−719

doi: 10.1016/j.enconman.2018.03.089
[39]

Patel M, Zhang X, Kumar A. 2016. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renewable and Sustainable Energy Reviews 53:1486−1499

doi: 10.1016/j.rser.2015.09.070
[40]

Kumar J, Vyas S. 2025. Comprehensive review of biomass utilization and gasification for sustainable energy production. Environment, Development and Sustainability 27:1−40

doi: 10.1007/s10668-023-04127-7
[41]

Ignat G, Șargu L, Prigoreanu I, Șargu N, Ulinici A, et al. 2024. Assessing the sustainability of agricultural bioenergy potential in the European Union. Energies 17:4879

doi: 10.3390/en17194879
[42]

Thirunavukkarasu M, Sawle Y, Lala H. 2023. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renewable and Sustainable Energy Reviews 176:113192

doi: 10.1016/j.rser.2023.113192
[43]

FAO. 2010. Bioenergy and food security: the BEFS analytical framework. FAO. www.fao.org/4/i1968e/i1968e00.htm

[44]

Aiguobarueghian I, Adanma UM, Kupa E. 2024. Land use dynamics and bioenergy: a critical review of environmental and socioeconomic interactions. World Journal of Advanced Research and Reviews 23:540−549

doi: 10.30574/wjarr.2024.23.1.2039
[45]

ISO. 2006. Environmental management — Life cycle assessment — Principles and framework. www.iso.org/standard/37456.html

[46]

Zimmermann AW, Wunderlich J, Müller L, Buchner GA, Marxen A, et al. 2020. Techno-economic assessment guidelines for CO2 utilization. Frontiers in Energy Research 8:5

doi: 10.3389/fenrg.2020.00005
[47]

Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke HJ. 2014. Methanol: the basic chemical and energy feedstock of the future. Berlin, Heidelberg: Springer doi: 10.1007/978-3-642-39709-7

[48]

AlNouss A, McKay G, Al-Ansari T. 2020. Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production 242:118499

doi: 10.1016/j.jclepro.2019.118499
[49]

Sezer S, Özveren U. 2021. Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. International Journal of Hydrogen Energy 46:20377−20396

doi: 10.1016/j.ijhydene.2021.03.184
[50]

Ramos A, Rouboa A. 2022. Life cycle thinking of plasma gasification as a waste-to-energy tool: review on environmental, economic and social aspects. Renewable and Sustainable Energy Reviews 153:111762

doi: 10.1016/j.rser.2021.111762
[51]

Bridgwater AV. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68−94

doi: 10.1016/j.biombioe.2011.01.048
[52]

Basu P. 2018. Gasification theory. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd edition. Amsterdam: Elsevier. pp. 211−262 doi: 10.1016/B978-0-12-812992-0.00007-8

[53]

Rauch R, Hrbek J, Hofbauer H. 2015. Biomass gasification for synthesis gas production and applications of the syngas. Advances in Bioenergy: The Sustainability Challenge, eds Lund PD, Byrne J, Berndes G, Vasalos IA. US: John Wiley & Sons, Ltd. pp. 73−91 doi: 10.1002/9781118957844.ch7

[54]

Santos MPS, Hanak DP. 2022. Techno-economic feasibility assessment of sorption enhanced gasification of municipal solid waste for hydrogen production. International Journal of Hydrogen Energy 47:6586−6604

doi: 10.1016/j.ijhydene.2021.12.037
[55]

Brandenberger M, Matzenberger J, Vogel F, Ludwig C. 2013. Producing synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis. Biomass and Bioenergy 51:26−34

doi: 10.1016/j.biombioe.2012.12.038
[56]

Ren J, Liu YL, Zhao XY, Cao JP. 2020. Methanation of syngas from biomass gasification: an overview. International Journal of Hydrogen Energy 45:4223−4243

doi: 10.1016/j.ijhydene.2019.12.023
[57]

González-García S, Moreira MT, Feijoo G. 2010. Environmental performance of lignocellulosic bioethanol production from Alfalfa stems. Biofuels, Bioproducts and Biorefining 4:118−131

doi: 10.1002/bbb.204
[58]

Cardoso J, Silva V, Eusébio D. 2019. Techno-economic analysis of a biomass gasification power plant dealing with forestry residues blends for electricity production in Portugal. Journal of Cleaner Production 212:741−753

doi: 10.1016/j.jclepro.2018.12.054
[59]

Colantoni A, Villarini M, Monarca D, Carlini M, Mosconi EM, et al. 2021. Economic analysis and risk assessment of biomass gasification CHP systems of different sizes through Monte Carlo simulation. Energy Reports 7:1954−1961

doi: 10.1016/j.egyr.2021.03.028
[60]

Alegre C, Modica E, Rodlert-Bacilieri M, Mornaghini FC, Aricò AS, et al. 2017. Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. International Journal of Hydrogen Energy 42:28063−28069

doi: 10.1016/j.ijhydene.2017.03.216
[61]

Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ. 2017. Progress in biofuel production from gasification. Progress in Energy and Combustion Science 61:189−248

doi: 10.1016/j.pecs.2017.04.001
[62]

Sarafraz MM, Christo FC. 2020. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification. Energy Conversion and Management 225:113428

doi: 10.1016/j.enconman.2020.113428
[63]

Wiatrowski A. 1999. Assessment of supercritical water gasification: alternative designs. Technical Report. Golden, USA: National Renewable Energy Laboratory

[64]

Mian A, Ensinas AV, Marechal F. 2015. Multi-objective optimization of SNG production from microalgae through hydrothermal gasification. Computers & Chemical Engineering 76:170−183

doi: 10.1016/j.compchemeng.2015.01.013
[65]

Rauch R, Hrbek J, Hofbauer H. 2014. Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy and Environment 3:343−362

doi: 10.1002/wene.97
[66]

Evangelisti S, Tagliaferri C, Clift R, Lettieri P, Taylor R, et al. 2015. Life cycle assessment of conventional and two-stage advanced energy-from-waste technologies for municipal solid waste treatment. Journal of Cleaner Production 100:212−223

doi: 10.1016/j.jclepro.2015.03.062
[67]

Al-Mosuli D, Barghi S, Fang Z, Xu C. 2014. Techno-economic analysis of renewable hydrogen production via SCWG of biomass using glucose as a model compound. In Near-critical and Supercritical Water and Their Applications for Biorefineries, eds Fang Z, Xu C. Volume 2. Dordrecht: Springer. pp. 445–471 doi: 10.1007/978-94-017-8923-3_17

[68]

Albarelli JQ, Mian A, Santos DT, Ensinas AV, Maréchal F, et al. 2015. Valorization of sugarcane biorefinery residues using supercritical water gasification: a case study and perspectives. The Journal of Supercritical Fluids 96:133−143

doi: 10.1016/j.supflu.2014.09.009
[69]

Ayodele BV, Mustapa SI, Tuan Abdullah TARB, Salleh SF. 2019. A mini-review on hydrogen-rich syngas production by thermo-catalytic and bioconversion of biomass and its environmental implications. Frontiers in Energy Research 7:118

doi: 10.3389/fenrg.2019.00118
[70]

Dias AC. 2014. Life cycle assessment of fuel chip production from eucalypt forest residues. The International Journal of Life Cycle Assessment 19:705−717

doi: 10.1007/s11367-013-0671-4
[71]

Kalinci Y, Hepbasli A, Dincer I. 2012. Life cycle assessment of hydrogen production from biomass gasification systems. International Journal of Hydrogen Energy 37:14026−14039

doi: 10.1016/j.ijhydene.2012.06.015
[72]

Arfelli F, Tosi C, Ciacci L, Passarini F. 2024. Life cycle assessment of a wood biomass gasification plant and implications for syngas and biochar utilization. Energies 17:2599

doi: 10.3390/en17112599
[73]

Carpentieri M, Corti A, Lombardi L. 2005. Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Conversion and Management 46:1790−1808

doi: 10.1016/j.enconman.2004.08.010
[74]

Béres R, Junginger M, van den Broek M. 2024. Assessing the feasibility of CO2 removal strategies in achieving climate-neutral power systems: insights from biomass, CO2 capture, and direct air capture in Europe. Advances in Applied Energy 14:100166

doi: 10.1016/j.adapen.2024.100166
[75]

Parvez AM, Mujtaba IM, Wu T. 2016. Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 94:579−588

doi: 10.1016/j.energy.2015.11.022
[76]

Ramos A, Rouboa A. 2020. Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review 85:106469

doi: 10.1016/j.eiar.2020.106469
[77]

Shen Y, Li X, Yao Z, Cui X, Wang CH. 2019. CO2 gasification of woody biomass: experimental study from a lab-scale reactor to a small-scale autothermal gasifier. Energy 170:497−506

doi: 10.1016/j.energy.2018.12.176
[78]

Gu H, Bergman R. 2015. Life-cycle GHG emissions of electricity from syngas produced by pyrolyzing woody biomass. Proceedings of the 58th International Convention of Society of Wood Science and Technology, 2015. Jackson Lake Lodge, Grand Teton National Park, Wyoming, USA. pp. 376−389 https://research.fs.usda.gov/treesearch/48595

[79]

Voultsos I, Katsourinis D, Giannopoulos D, Founti M. 2020. Integrating LCA with process modeling for the energetic and environmental assessment of a CHP biomass gasification plant: a case study in Thessaly, Greece. Eng 1:2−30

doi: 10.3390/eng1010002
[80]

Maitlo G, Ali I, Mangi KH, Ali S, Maitlo HA, et al. 2022. Thermochemical conversion of biomass for syngas production: current status and future trends. Sustainability 14:2596

doi: 10.3390/su14052596
[81]

Bridgwater AV. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 91:87−102

doi: 10.1016/S1385-8947(02)00142-0
[82]

Kumar A, Jones DD, Hanna MA. 2009. Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556−581

doi: 10.3390/en20300556
[83]

International Renewable Energy Agency. 2012. Renewable energy technologies: cost analysis series: concentrating solar power. Vol. 4. Abu Dhabi: International Renewable Energy Agency. www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Concentrating-Solar-Power

[84]

Swanson RM, Platon A, Satrio JA, Brown RC. 2010. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel 89:S11−S19

doi: 10.1016/j.fuel.2010.07.027
[85]

Göteborg Energi. 2013. The GoBiGas Project -Efficient transfer of biomass to biofuels. IEA Bioenergy EXCO66 meeting in YorkWorkshop of 12 October 2010. www.ieabioenergy.com/wp-content/uploads/2013/10/ExCo66-P4-The-GoBiGas-project-Ingemar-Gunnarsson1.pdf

[86]

Spath PL, Aasad A, Eggeman T, Ringer M, Wallace B, et al. 2013. Biomass to hydrogen production detailed design and economics utilizing the Battelle Columbus Laboratory indirectly-heated gasifier (NREL/TP-510-37408). Golden, CO: National Renewable Energy Laboratory doi: 10.2172/15016221

[87]

Ahmadvand S. 2023. Supply chain optimization of forest-based biomass for gasification considering uncertainties. Thesis. University of British Columbia, Canada doi: 10.14288/1.0435209

[88]

Bachmann M, Völker S, Kleinekorte J, Bardow A. 2023. Syngas from what? Comparative life-cycle assessment for syngas production from biomass, CO2, and steel mill off-gases. ACS Sustainable Chemistry & Engineering 11:5356−5366

doi: 10.1021/acssuschemeng.2c05390
[89]

Wei L, Pordesimo LO, Filip To SD, Herndon CW, Batchelor WD. 2009. Evaluation of micro-scale syngas production costs through modeling. Transactions of the ASABE 52:1649−1659

doi: 10.13031/2013.29116
[90]

Li X, Raorane CJ, Xia C, Wu Y, Tran TKN, et al. 2023. Latest approaches on green hydrogen as a potential source of renewable energy towards sustainable energy: spotlighting of recent innovations, challenges, and future insights. Fuel 334:126684

doi: 10.1016/j.fuel.2022.126684
[91]

Hydrogen Council. 2017. Hydrogen scaling up: a sustainable pathway for the global energy transition. Hydrogen Council www.h2knowledgecentre.com/content/policypaper1201?crawler=redirect&mimetype=application/pdf

[92]

IEA. 2023. Global hydrogen review 2023. International Energy Agency, France. www.iea.org/reports/global-hydrogen-review-2023

[93]

Levin DB, Chahine R. 2010. Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy 35:4962−4969

doi: 10.1016/j.ijhydene.2009.08.067
[94]

Körner A, Tam C, Bennett S, Gagné J. 2015. Technology roadmap-hydrogen and fuel cells. International Energy Agency (IEA): Paris, France. www.iea.org/reports/technology-roadmap-hydrogen-and-fuel-cells

[95]

Talavera-Caro AG, Sánchez-Muñoz MA, Hernández-De Lira IO, Montañez-Hernández LE, Hernández-Almanza AY, et al. 2020. Proteomics of lignocellulosic substrates bioconversion in anaerobic digesters to increase carbon recovery as methane. In Valorisation of Agro-industrial Residues – Volume I: Biological Approaches, eds Zakaria Z, Boopathy R, Dib J. Cham: Springer. pp. 81–110 doi: 10.1007/978-3-030-39137-9_4

[96]

Milbrandt A, Seiple T, Heimiller D, Skaggs R, Coleman A. 2018. Wet waste-to-energy resources in the United States. Resources, Conservation and Recycling 137:32−47

doi: 10.1016/j.resconrec.2018.05.023
[97]

Saha S, Jeon BH, Kurade MB, Jadhav SB, Chatterjee PK, et al. 2018. Optimization of dilute acetic acid pretreatment of mixed fruit waste for increased methane production. Journal of Cleaner Production 190:411−421

doi: 10.1016/j.jclepro.2018.04.193
[98]

Reigstad GA, Roussanaly S, Straus J, Anantharaman R, de Kler R, et al. 2022. Moving toward the low-carbon hydrogen economy: experiences and key learnings from national case studies. Advances in Applied Energy 8:100108

doi: 10.1016/j.adapen.2022.100108
[99]

Hanto J, Herpich P, Löffler K, Hainsch K, Moskalenko N, et al. 2024. Assessing the implications of hydrogen blending on the European energy system towards 2050. Advances in Applied Energy 13:100161

doi: 10.1016/j.adapen.2023.100161
[100]

Consonni S, Mastropasqua L, Spinelli M, Barckholtz TA, Campanari S. 2021. Low-carbon hydrogen via integration of steam methane reforming with molten carbonate fuel cells at low fuel utilization. Advances in Applied Energy 2:100010

doi: 10.1016/j.adapen.2021.100010
[101]

Martin J, Dimanchev E, Neumann A. 2023. Carbon abatement costs for renewable fuels in hard-to-abate transport sectors. Advances in Applied Energy 12:100156

doi: 10.1016/j.adapen.2023.100156
[102]

Martínez-Gordón R, Gusatu L, Morales-España G, Sijm J, Faaij A. 2022. Benefits of an integrated power and hydrogen offshore grid in a net-zero North Sea energy system. Advances in Applied Energy 7:100097

doi: 10.1016/j.adapen.2022.100097
[103]

Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, et al. 2018. Net-zero emissions energy systems. Science 360:eaas9793

doi: 10.1126/science.aas9793
[104]

Weimann L, Gabrielli P, Boldrini A, Kramer GJ, Gazzani M. 2021. Optimal hydrogen production in a wind-dominated zero-emission energy system. Advances in Applied Energy 3:100032

doi: 10.1016/j.adapen.2021.100032
[105]

Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. 2021. Hydrogen production technologies: from fossil fuels toward renewable sources. a mini review. Energy & Fuels 35:16403−16415

doi: 10.1021/acs.energyfuels.1c02501
[106]

Sharmila VG, Tamilarasan K, Kumar MD, Kumar G, Varjani S, et al. 2022. Trends in dark biohydrogen production strategy and linkages with transition towards low carbon economy: an outlook, cost-effectiveness, bottlenecks and future scope. International Journal of Hydrogen Energy 47:15309−15332

doi: 10.1016/j.ijhydene.2021.12.139
[107]

Lane B, Reed J, Shaffer B, Samuelsen S. 2021. Forecasting renewable hydrogen production technology shares under cost uncertainty. International Journal of Hydrogen Energy 46:27293−27306

doi: 10.1016/j.ijhydene.2021.06.012
[108]

Brar KK, Cortez AA, Pellegrini VOA, Amulya K, Polikarpov I, et al. 2022. An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy 47:37264−81

doi: 10.1016/j.ijhydene.2022.01.156
[109]

Lui J, Paul MC, Sloan W, You S. 2022. Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in Glasgow. International Journal of Hydrogen Energy 47:13532−13551

doi: 10.1016/j.ijhydene.2022.02.120
[110]

Chen WH, Farooq W, Shahbaz M, Naqvi SR, Ali I, et al. 2021. Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process. Energy 226:120433

doi: 10.1016/j.energy.2021.120433
[111]

Kannah RY, Kavitha S, Preethi, Karthikeyan OP, Kumar G, et al. 2021. Techno-economic assessment of various hydrogen production methods–a review. Bioresource Technology 319:124175

doi: 10.1016/j.biortech.2020.124175
[112]

Tan ECD, Marker TL, Roberts MJ. 2014. Direct production of gasoline and diesel fuels from biomass via integrated hydropyrolysis and hydroconversion process—a techno-economic analysis. Environmental Progress & Sustainable Energy 33:609−617

doi: 10.1002/ep.11791
[113]

Brown TR, Thilakaratne R, Brown RC, Hu G. 2013. Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106:463−469

doi: 10.1016/j.fuel.2012.11.029
[114]

Hosseinzadeh A, Zhou JL, Li X, Afsari M, Altaee A. 2022. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renewable and Sustainable Energy Reviews 156:111991

doi: 10.1016/j.rser.2021.111991
[115]

Thilakaratne R, Wright MM, Brown RC. 2014. A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels. Fuel 128:104−112

doi: 10.1016/j.fuel.2014.02.077
[116]

Valente A, Iribarren D, Dufour J. 2019. Harmonising methodological choices in life cycle assessment of hydrogen: a focus on acidification and renewable hydrogen. International Journal of Hydrogen Energy 44:19426−19433

doi: 10.1016/j.ijhydene.2018.03.101
[117]

Parthasarathy P, Narayanan KS. 2014. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield–a review. Renewable Energy 66:570−579

doi: 10.1016/j.renene.2013.12.025
[118]

Özdenkçi K, De Blasio C, Sarwar G, Melin K, Koskinen J, et al. 2019. Techno-economic feasibility of supercritical water gasification of black liquor. Energy 189:116284

doi: 10.1016/j.energy.2019.116284
[119]

Canton H. 2021. International energy agency—IEA. In The Europa Directory of International Organizations 2021, 23rd edition. London: Routledge. pp. 684−686 doi: 10.4324/9781003179900-103

[120]

IEA. 2019. The future of hydrogen. www.iea.org/reports/the-future-of-hydrogen

[121]

Li J, Wei YM, Liu L, Li X, Yan R. 2022. The carbon footprint and cost of coal-based hydrogen production with and without carbon capture and storage technology in China. Journal of Cleaner Production 362:132514

doi: 10.1016/j.jclepro.2022.132514
[122]

Lee DJ, Show KY, Su A. 2011. Dark fermentation on biohydrogen production: pure culture. Bioresource Technology 102:8393−8402

doi: 10.1016/j.biortech.2011.03.041
[123]

Saha S, Mondal A, Kurade MB, Ahn Y, Banerjee P, et al. 2023. Cutting-edge technological advancements in biomass-derived hydrogen production. Reviews in Environmental Science and Bio/Technology 22:397−426

doi: 10.1007/s11157-023-09648-1
[124]

Nakano J. 2022. China's hydrogen industrial strategy. Center for Strategic & International Studies www.csis.org/analysis/chinas-hydrogen-industrial-strategy

[125]

IRENA. 2021. Green hydrogen supply: a guide to policy making. International Renewable Energy Agency Abu Dhabi, United Arab Emirates www.irena.org/publications/2021/May/Green-Hydrogen-Supply-A-Guide-To-Policy-Making

[126]

Qyyum MA, Ismail S, Ni SQ, Ihsanullah I, Ahmad R, et al. 2022. Harvesting biohydrogen from industrial wastewater: production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. Journal of Cleaner Production 340:130809

doi: 10.1016/j.jclepro.2022.130809
[127]

Tagliaferri C, Evangelisti S, Clift R, Lettieri P, Chapman C, et al. 2016. Life cycle assessment of conventional and advanced two-stage energy-from-waste technologies for methane production. Journal of Cleaner Production 129:144−158

doi: 10.1016/j.jclepro.2016.04.092
[128]

Romagnoli F, Blumberga D, Pilicka I. 2011. Life cycle assessment of biohydrogen production in photosynthetic processes. International Journal of Hydrogen Energy 36:7866−7871

doi: 10.1016/j.ijhydene.2011.02.004
[129]

Li G, Zhang K, Yang B, Liu F, Weng Y, et al. 2019. Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification. Energy 174:638−646

doi: 10.1016/j.energy.2019.03.023
[130]

Wulf C, Zapp P, Schreiber A, Kuckshinrichs W. 2022. Integrated life cycle sustainability assessment: hydrogen production as a showcase for an emerging methodology. Towards a Sustainable Future-Life Cycle Management: Challenges and Prospects, eds Klos ZS, Kalkowska J, Kasprzak J. Cham: Springer. pp 97–106 doi: 10.1007/978-3-030-77127-0_9

[131]

Lepage T, Kammoun M, Schmetz Q, Richel A. 2021. Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy 144:105920

doi: 10.1016/j.biombioe.2020.105920
[132]

Stoutenburg ED, Jenkins N, Jacobson MZ. 2010. Power output variations of co-located offshore wind turbines and wave energy converters in California. Renewable Energy 35:2781−2791

doi: 10.1016/j.renene.2010.04.033
[133]

Li G, Cui P, Wang Y, Liu Z, Zhu Z, et al. 2020. Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy 191:116588

doi: 10.1016/j.energy.2019.116588
[134]

O'Brien C. 2023. Hydrogen economy 2023-2033: production, storage, distribution & applications, IDTechEx www.idtechex.com/en/research-report/hydrogen-economy/946

[135]

IRENA. 2018. Hydrogen from renewable power: technology outlook for the energy transition. International Renewable Energy Agency, Abu Dhabi. www.irena.org/publications/2018/sep/hydrogen-from-renewable-power

[136]

Moreno J, Dufour J. 2013. Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. International Journal of Hydrogen Energy 38:7616−7622

doi: 10.1016/j.ijhydene.2012.11.076
[137]

Rosen MA. 2018. Environmental sustainability tools in the biofuel industry. Biofuel Research Journal 5:751−752

doi: 10.18331/BRJ2018.5.1.2
[138]

Bimbo N, Physick AJ, Noguera-Díaz A, Pugsley A, Holyfield LT, et al. 2015. High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures. Chemical Engineering Journal 272:38−47

doi: 10.1016/j.cej.2015.02.088
[139]

Department SR. 2022. Actual and potential biomethane production worldwide in 2022. www.statista.com/statistics/1296541/global-biomethane-production-and-potential-production/

[140]

BYJUS. 2023. Methane. https://byjus.com/chemistry/methane/

[141]

Nagrale P. 2025. Methane market research report information by source. Methane Market. www.marketresearchfuture.com/reports/methane-market-7373

[142]

Lim C, Kim D, Song C, Kim J, Han J, et al. 2015. Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases. Applied Energy 139:17−29

doi: 10.1016/j.apenergy.2014.10.084
[143]

Pavičić J, Novak Mavar K, Brkić V, Simon K. 2022. Biogas and biomethane production and usage: technology development, advantages and challenges in Europe. Energies 15:2940

doi: 10.3390/en15082940
[144]

Xue S, Zhang S, Wang Y, Wang Y, Song J, et al. 2022. What can we learn from the experience of European countries in biomethane industry: taking China as an example? Renewable and Sustainable Energy Reviews 157:112049

doi: 10.1016/j.rser.2021.112049
[145]

Sulewski P, Ignaciuk W, Szymańska M, Wąs A. 2023. Development of the biomethane market in Europe. Energies 16:2001

doi: 10.3390/en16042001
[146]

Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, et al. 2014. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Research 4:96−104

doi: 10.1016/j.algal.2013.12.003
[147]

Chandrasekhar K, Cayetano RDA, Mehrez I, Kumar G, Kim SH. 2020. Evaluation of the biochemical methane potential of different sorts of Algerian date biomass. Environmental Technology & Innovation 20:101180

doi: 10.1016/j.eti.2020.101180
[148]

Maneein S, Milledge JJ, Harvey PJ, Nielsen BV. 2021. Methane production from Sargassum muticum: effects of seasonality and of freshwater washes. Energy and Built Environment 2:235−242

doi: 10.1016/j.enbenv.2020.06.011
[149]

Bioenergy I, Binder M, Kraussler M, Kuba M, Luisser M. 2018. Hydrogen from biomass gasification. IEA Bioenergy. www.ieabioenergy.com/blog/publications/hydrogen-from-biomass-gasification/

[150]

Martín-Hernández E, Guerras LS, Martín M. 2020. Optimal technology selection for the biogas upgrading to biomethane. Journal of Cleaner Production 267:122032

doi: 10.1016/j.jclepro.2020.122032
[151]

Kolb S, Plankenbühler T, Hofmann K, Bergerson J, Karl J. 2021. Life cycle greenhouse gas emissions of renewable gas technologies: a comparative review. Renewable and Sustainable Energy Reviews 146:111147

doi: 10.1016/j.rser.2021.111147
[152]

Katla-Milewska D, Nazir SM, Skorek-Osikowska A. 2024. Synthetic natural gas (SNG) production with higher carbon recovery from biomass: techno-economic assessment. Energy Conversion and Management 300:117895

doi: 10.1016/j.enconman.2023.117895
[153]

Uusitalo V, Leino M, Kasurinen H, Linnanen L. 2017. Transportation biofuel efficiencies from cultivated feedstock in the boreal climate zone: Case Finland. Biomass and Bioenergy 99:79−89

doi: 10.1016/j.biombioe.2017.02.017
[154]

Müller-Langer F. 2012. Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. www.deutsche-digitale-bibliothek.de/item/FJZUFB6HAJ25MKFD5RGWRKINL6K33TBX (in Germany)

[155]

Steubing B, Zah R, Ludwig C. 2011. Life cycle assessment of SNG from wood for heating, electricity, and transportation. Biomass and Bioenergy 35:2950−2960

doi: 10.1016/j.biombioe.2011.03.036
[156]

Al-Mawali KS, Osman AI, Al-Muhtaseb AH, Mehta N, Jamil F, et al. 2021. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach. Renewable Energy 170:832−846

doi: 10.1016/j.renene.2021.02.027
[157]

Brassard P, Godbout S, Hamelin L. 2021. Framework for consequential life cycle assessment of pyrolysis biorefineries: a case study for the conversion of primary forestry residues. Renewable and Sustainable Energy Reviews 138:110549

doi: 10.1016/j.rser.2020.110549
[158]

Di Fulvio F, Forsell N, Korosuo A, Obersteiner M, Hellweg S. 2019. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Science of The Total Environment 651:1505−1516

doi: 10.1016/j.scitotenv.2018.08.419
[159]

Schonhoff A, Jablonowski ND, Zapp P. 2021. Environmental competitiveness evaluation by life cycle assessment for solid fuels generated from Sida hermaphrodita biomass. Biomass and Bioenergy 145:105966

doi: 10.1016/j.biombioe.2021.105966
[160]

Simon JM. 2019. A zero waste hierarchy for Europe new tools for new times: from waste management to resource management. Zero Waste Europe. https://zerowasteeurope.eu/2019/05/a-zero-waste-hierarchy-for-europe/

[161]

IEA Bioenergy. 2015. "CHRISGAS" final report. https://cordis.europa.eu/project/id/502587/reporting

[162]

Pfeifer C, Rauch R, Hofbauer H. 2004. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Industrial & Engineering Chemistry Research 43:1634−1640

doi: 10.1021/ie030742b
[163]

Müller S, Schmid JC, Hofbauer H. 2016. First results with an innovative biomass gasification test plant. Proc. 3rd International Conference on Renewable Energy Gas Technology, Malmö, Sweden, 2016. www.researchgate.net/profile/Johannes-Schmid-3/publication/324593963_First_results_with_an_innovative_biomass_gasification_test_plant/links/5c86d3ce299bf1e02e28579b/First-results-with-an-innovative-biomass-gasification-test-plant.pdf

[164]

Connelly E, Penev M, Milbrandt A, Roberts B, Gilroy N, et al. 2020. Resource Assessment for hydrogen production. Technical Report, NREL/TP-5400-77198 Golden, CO: National Renewable Energy Laboratory https://docs.nrel.gov/docs/fy20osti/77198.pdf

[165]

Simbeck D, Chang E. 2002. Hydrogen supply: cost estimate for hydrogen pathways–scoping analysis. Report, NREL/SR-540-32525. National Renewable Energy Laboratory doi: 10.2172/15002482

[166]

Yokoyama S, Matsumura Y. 2015. The present status and future scope of bioenergy in Japan. Journal of the Japan Institute of Energy 94:1079−1086

doi: 10.3775/jie.94.1079
[167]

Junginger M, Van Dam J, Zarrilli S, Mohamed FA, Marchal D, et al. 2011. Opportunities and barriers for international bioenergy trade. Energy Policy 39:2028−2042

doi: 10.1016/j.enpol.2011.01.040
[168]

Meuleneers L, Engelman L, Ostojic S, Harzendorf F, Sheykhha S, et al. 2024. From Diverse Perspectives to Informed Policymaking-An Interdisciplinary Perspective on the Assessment of DACCS and Other Terrestrial CDR Technologies. https://doi.org/10.2139/ssrn.5278865

[169]

DTU ENERGY, Department of Energy Conversion and Storage. 2022. Pilot plant demonstration of biomass gasification and PSA purification. www.energy.dtu.dk

[170]

Thunman H, Seemann M. 2019. The GoBiGas plant. In Substitute Natural Gas from Waste, eds Materazzi M, Foscolo PU. Amsterdam: Elsevier. pp. 455−474 doi: 10.1016/B978-0-12-815554-7.00017-9

[171]

Borys G. 2020. NER300: Success or Failure of Public Support for Low-emission Technologies? Problemy Ekorozwoju 15:189−196

doi: 10.35784/pe.2020.1.20
[172]

Grahn M, Hansson J. 2016. Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans. Advances in Bioenergy: The Sustainability Challenge, eds Lund PD, Byrne J, Berndes G, Vasalos IA. US: John Wiley & Sons, Ltd. pp. 431−446 doi: 10.1002/9781118957844.ch28

[173]

European Commission. 2023. FlexiFuel-SOFC project report. https://cordis.europa.eu/project/id/641229

[174]

Arregi A, Lopez G, Amutio M, Artetxe M, Barbarias I, et al. 2018. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. Fuel 216:233−244

doi: 10.1016/j.fuel.2017.12.002
[175]

Shang D, Sun G. 2016. Electricity-price arbitrage with plug-in hybrid electric vehicle: gain or loss? Energy Policy 95:402−410

doi: 10.1016/j.enpol.2016.05.019
[176]

Rubin ES, Davison JE, Herzog HJ. 2015. The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control 40:378−400

doi: 10.1016/j.ijggc.2015.05.018
[177]

Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, et al. 2018. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 11:1062−1176

doi: 10.1039/C7EE02342A
[178]

Fajardy M, Morris J, Gurgel A, Herzog H, Mac Dowell N, et al. 2021. The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5 °C or 2 °C world. Global Environmental Change 68:102262

doi: 10.1016/j.gloenvcha.2021.102262
[179]

Salas DA, Boero AJ, Ramirez AD. 2024. Life cycle assessment of bioenergy with carbon capture and storage: a review. Renewable and Sustainable Energy Reviews 199:114458

doi: 10.1016/j.rser.2024.114458
[180]

Dahmen N, Henrich E, Dinjus E, Weirich F. 2012. The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy, Sustainability and Society 2:3

doi: 10.1186/2192-0567-2-3
[181]

Thunman H, Seemann M, Berdugo Vilches T, Maric J, Pallares D, et al. 2018. Advanced biofuel production via gasification–lessons learned from 200 man-years of research activity with Chalmers' research gasifier and the GoBiGas demonstration plant. Energy Science & Engineering 6:6−34

doi: 10.1002/ese3.188
[182]

Yue G, Lin H, Peng Y, Min J, Wang M, et al. 2021. Future green hydrogen energy from biomass. Chemical Industry and Engineering Progress 40:4678−4684 (in Chinese)

doi: 10.16085/j.issn.1000-6613.2021-1500
[183]

Faaij A. 2006. Modern biomass conversion technologies. Mitigation and Adaptation Strategies for Global Change 11:343−375

doi: 10.1007/s11027-005-9004-7
[184]

Tezer Ö, Karabağ N, Öngen A, Çolpan CÖ, Ayol A. 2022. Biomass gasification for sustainable energy production: a review. International Journal of Hydrogen Energy 47:15419−15433

doi: 10.1016/j.ijhydene.2022.02.158
[185]

Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, et al. 2015. Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy 40:4285−4294

doi: 10.1016/j.ijhydene.2015.01.123
[186]

Anca-Couce A, Hochenauer C, Scharler R. 2021. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews 135:110237

doi: 10.1016/j.rser.2020.110237
[187]

Cherubini F, Strømman AH. 2011. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology 102:437−451

doi: 10.1016/j.biortech.2010.08.010
[188]

Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, et al. 2016. Biophysical and economic limits to negative CO2 emissions. Nature Climate Change 6:42−50

doi: 10.1038/nclimate2870
[189]

Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresource Technology 101:1570−1580

doi: 10.1016/j.biortech.2009.11.046
[190]

Yaashikaa PR, Devi MK, Kumar PS. 2022. Biohydrogen production: an outlook on methods, constraints, economic analysis and future prospect. International Journal of Hydrogen Energy 47:41488−41506

doi: 10.1016/j.ijhydene.2022.07.082
[191]

Lehmann J, Joseph S. 2024. Biochar for environmental management: science, technology and implementation, 3rd edition. London: Routledge. 902 pp doi: 10.4324/9781003297673

[192]

IEA. 2021. The role of hydrogen in energy transition. International Energy Agency

[193]

Zhang YS, Schneider K, Qiu H, Zhu HL. 2022. A perspective of low carbon lithium-ion battery recycling technology. Carbon Capture Science & Technology 5:100074

doi: 10.1016/j.ccst.2022.100074
[194]

Ray R, Taylor R, Chapman C. 2012. The deployment of an advanced gasification technology in the treatment of household and other waste streams. Process Safety and Environmental Protection 90:213−220

doi: 10.1016/j.psep.2011.06.013
[195]

Lin R, Man Y, Ren J. 2020. Framework of life cycle sustainability assessment. In Life Cycle Sustainability Assessment for Decision-Making: Amsterdam: Elsevier. pp. 155−173 doi: 10.1016/B978-0-12-818355-7.00008-7

[196]

Taylor SC, Firth SK, Wang C, Allinson D, Quddus M, et al. 2014. Spatial mapping of building energy demand in Great Britain. GCB Bioenergy 6:123−135

doi: 10.1111/gcbb.12165
[197]

van der Meijden CM, Veringa HJ, Rabou LPLM. 2010. The production of synthetic natural gas (SNG): a comparison of three wood gasification systems for energy balance and overall efficiency. Biomass and Bioenergy 34:302−311

doi: 10.1016/j.biombioe.2009.11.001
[198]

Pfeifer C, Koppatz S, Hofbauer H. 2011. Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Conversion and Biorefinery 1:39−53

doi: 10.1007/s13399-011-0007-1
[199]

Alptekin FM, Celiktas MS. 2022. Review on catalytic biomass gasification for hydrogen production as a sustainable energy form and social, technological, economic, environmental, and political analysis of catalysts. ACS Omega 7:24918−24941

doi: 10.1021/acsomega.2c01538