[1]

Samphire M, Chadwick DR, Jones DL. 2024. Biodegradable plastic film mulch increases the mineralisation of organic amendments and prevents nitrate leaching during the growing season in organic vegetable production. Journal of Sustainable Agriculture and Environment 3:e70007

doi: 10.1002/sae2.70007
[2]

Sokombela A, Ndhlala AR, Bopape-Mabapa MP, Eiasu BK, Mpai S, et al. 2025. Colored plastic mulch impacts on soil properties, weed density and vegetable crop productivity: a meta-analysis. Scientific Reports 15:31891

doi: 10.1038/s41598-025-17237-1
[3]

Orzolek MD. 2017. A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture. Oxford, UK: William Andrew. pp. 1−207 doi: 10.1016/B978-0-08-102170-5.00001-4

[4]

DiGiacomo G, Atucha A, Burkness E, Guedot C, Koenig JM, et al. 2025. Economic analysis of biodegradable paper versus plastic mulch for organic day-neutral strawberry production in the upper Midwest. HortTechnology 35:410−19

doi: 10.21273/HORTTECH05639-25
[5]

Shcherbatyuk N, Wortman SE, McFadden D, Weiss B, Weyers S, et al. 2024. Alternative and emerging mulch technologies for organic and sustainable agriculture in the United States: a review. HortScience 59:1524−33

doi: 10.21273/HORTSCI18029-24
[6]

Boyhan GE, O’Connell S, McNeill R, Stone S. 2019. Evaluation of watermelon varieties under organic production practices in Georgia. HortTechnology 29:382−88

doi: 10.21273/HORTTECH04199-18
[7]

Hofmann T, Ghoshal S, Tufenkji N, Adamowski JF, Bayen S, et al. 2023. Plastics can be used more sustainably in agriculture. Communications Earth & Environment 4:332

doi: 10.1038/s43247-023-00982-4
[8]

Sathyanarayanan A, Murugesan B, Rajamanickam N, Ordoñez C, Onyelowe KC, et al. 2024. Comprehensive study on zeolite polyester composite coated sheet for eco-friendly solar panels for enhanced panel performance and reduced panel temperature. Scientific Reports 14:20072

doi: 10.1038/s41598-024-71108-9
[9]

Bibi F, Guillaume C, Gontard N, Sorli B. 2017. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science & Technology 62:91−103

doi: 10.1016/j.jpgs.2017.01.013
[10]

Kounina A, Daystar J, Chalumeau S, Devine J, Geyer R, et al. 2024. The global apparel industry is a significant yet overlooked source of plastic leakage. Nature Communications 15:5022

doi: 10.1038/s41467-024-49441-4
[11]

Liu X, Wei W, Chen Z, Wu L, Duan H, et al. 2025. The threats of micro- and nanoplastics to aquatic ecosystems and water health. Nature Water 3:764−81

doi: 10.1038/s44221-025-00464-1
[12]

Lamoree MH, van Boxel J, Nardella F, Houthuijs KJ, Brandsma SH, et al. 2025. Health impacts of microplastic and nanoplastic exposure. Nature Medicine 31:2873−87

doi: 10.1038/s41591-025-03902-5
[13]

Cusworth SJ, Davies WJ, McAinsh MR, Gregory AS, Storkey J, et al. 2024. Agricultural fertilisers contribute substantially to microplastic concentrations in UK soils. Communications Earth & Environment 5:7

doi: 10.1038/s43247-023-01172-y
[14]

Wen Y, Liu J, Dhital Y, Wu X, Song L, et al. 2022. Integrated effects of plastic film residues on cotton growth and field carbon sequestration under drip irrigation in arid oasis regions. Agriculture, Ecosystems & Environment 339:108131

doi: 10.1016/j.agee.2022.108131
[15]

Kedzierski M, Cirederf-Boulant D, Palazot M, Yvin M, Bruzaud S. 2023. Continents of plastics: an estimate of the stock of microplastics in agricultural soils. Science of The Total Environment 880:163294

doi: 10.1016/j.scitotenv.2023.163294
[16]

Duda A, Petka K. 2025. The presence of micro- and nanoplastics in food and the estimation of the amount consumed depending on dietary patterns. Molecules 30:3666

doi: 10.3390/molecules30183666
[17]

Astolfi ML, Marconi E, Lorini L, Valentino F, Silva F, et al. 2020. Elemental concentration and migratability in bioplastics derived from organic waste. Chemosphere 259:127472

doi: 10.1016/j.chemosphere.2020.127472
[18]

Gontard N, Sonesson U, Birkved M, Majone M, Bolzonella D, et al. 2018. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology 48:614−54

doi: 10.1080/10643389.2018.1471957
[19]

Walker TR. 2025. Recycling alone cannot end the plastic pollution crisis. Cell Reports Sustainability 2:100521

doi: 10.1016/j.crsus.2025.100521
[20]

Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, et al. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances 5:eaax1157

doi: 10.1126/sciadv.aax1157
[21]

Aubin S, Beaugrand J, Berteloot M, Boutrou R, Buche P, et al. 2022. Plastics in a circular economy: mitigating the ambiguity of widely-used terms from stakeholders consultation. Environmental Science & Policy 134:119−26

doi: 10.1016/j.envsci.2022.04.011
[22]

Golwala H, Zhang X, Iskander SM, Smith AL. 2021. Solid waste: an overlooked source of microplastics to the environment. Science of The Total Environment 769:144581

doi: 10.1016/j.scitotenv.2020.144581
[23]

Corella-Puertas E, Hajjar C, Lavoie J, Boulay AM. 2023. MarILCA characterization factors for microplastic impacts in life cycle assessment: physical effects on biota from emissions to aquatic environments. Journal of Cleaner Production 418:138197

doi: 10.1016/j.jclepro.2023.138197
[24]

Gontard N, David G, Guilbert A, Sohn J. 2022. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nature Sustainability 5:472−78

doi: 10.1038/s41893-022-00863-2
[25]

Röös E, Mayer A, Muller A, Kalt G, Ferguson S, et al. 2022. Agroecological practices in combination with healthy diets can help meet EU food system policy targets. Science of The Total Environment 847:157612

doi: 10.1016/j.scitotenv.2022.157612