[1]

Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73

doi: 10.1146/annurev.arplant.53.091401.143329
[2]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[3]

Hasegawa PM. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92:19−31

doi: 10.1016/j.envexpbot.2013.03.001
[4]

Busoms S, Fischer S, Yant L. 2023. Chasing the mechanisms of ecologically adaptive salinity tolerance. Plant Communications 4:100571

doi: 10.1016/j.xplc.2023.100571
[5]

Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217:523−39

doi: 10.1111/nph.14920
[6]

Che-Othman MH, Millar AH, Taylor NL. 2017. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant, Cell & Environment 40:2875−905

doi: 10.1111/pce.13034
[7]

Fu HH, Luan S. 1998. AtKUP1: a dual-affinity K+ transporter from Arabidopsis. The Plant Cell 10:63−73

doi: 10.2307/3870629
[8]

Shen B, Jensen RG, Bohnert HJ. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology 113:1177−83

doi: 10.1104/pp.113.4.1177
[9]

Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, et al. 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell 11:1195−206

doi: 10.1105/tpc.11.7.1195
[10]

Hong Z, Lakkineni K, Zhang Z, Verma DP. 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122:1129−36

doi: 10.1104/pp.122.4.1129
[11]

Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE Jr, et al. 2007. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular and Cellular Biology 27:5214−24

doi: 10.1128/MCB.01989-06
[12]

Arya A, Nyamathulla S, Noordin MI, Ali Mohd M. 2012. Antioxidant and hypoglycemic activities of leaf extracts of three popular Terminalia species. Journal of Chemistry 9:883−92

doi: 10.1155/2012/859831
[13]

Genisel M, Erdal S, Kizilkaya M. 2015. The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regulation 75:187−97

doi: 10.1007/s10725-014-9943-7
[14]

Tong S, Wang Y, Chen N, Wang D, Liu B, et al. 2022. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biology 23:148

doi: 10.1186/s13059-022-02718-7
[15]

Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324−49

doi: 10.1016/j.ecoenv.2004.06.010
[16]

Ma L, Li X, Zhang J, Yi D, Li F, et al. 2023. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. Plant, Cell & Environment 46:3887−901

doi: 10.1111/pce.14703
[17]

Wang LQ, Wen SS, Wang R, Wang C, Gao B, et al. 2021. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar. Plant Biotechnology Journal 19:2249−60

doi: 10.1111/pbi.13653
[18]

Lei X, Fang J, Zhang Z, Li Z, Xu Y, et al. 2025. PdbCRF5 overexpression negatively regulates salt tolerance by downregulating PdbbZIP61 to mediate reactive oxygen species scavenging and ABA synthesis in Populus davidiana × P. bolleana. Plant, Cell & Environment 48:1088−106

doi: 10.1111/pce.15199
[19]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[20]

Ma H, Liu C, Li Z, Ran Q, Xie G, et al. 2018. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology 178:753−70

doi: 10.1104/pp.18.00436
[21]

Dong T, Park Y, Hwang I. 2015. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays in Biochemistry 58:29−48

doi: 10.1042/bse0580029
[22]

Zhao H, Nie K, Zhou H, Yan X, Zhan Q, et al. 2020. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist 228:596−608

doi: 10.1111/nph.16713
[23]

Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research 124:509−25

doi: 10.1007/s10265-011-0412-3
[24]

Li S, Lin YJ, Wang P, Zhang B, Li M, et al. 2019. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. The Plant Cell 31:663−86

doi: 10.1105/tpc.18.00437
[25]

Zhang B, Wang Z, Dai X, Gao J, Zhao J, et al. 2024. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa. New Phytologist 241:1950−72

doi: 10.1111/nph.19481
[26]

Gao J, Wu X, Zhai R, Liu H, Zhao J, et al. 2025. Coordinated chromatin modifications mediated by AREB and MYB transcription factors sustain drought tolerance in Populus. Plant Physiology 198:kiaf271

doi: 10.1093/plphys/kiaf271
[27]

Zhou B, Wang L, Ji Z, Chen X, Sun X, et al. 2025. The PagAFP2a-PagAREB1 module form a negative feedback loop to regulate salt tolerance in Populus. Plant, Cell & Environment 48:5198−216

doi: 10.1111/pce.15495
[28]

Xia Y, Guo R, Lu T, Jiang S, You K, et al. 2025. PagHB7/PagABF4PagEPFL9 Module Regulates Stomatal Density and Drought Tolerance in Poplar. Plant Biotechnology Journal 23:4857−71

doi: 10.1111/pbi.70273
[29]

Yu XQ, Niu HQ, Zhang YM, Shan XX, Liu C, et al. 2024. Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus. Plant Physiology 197:kiae593

doi: 10.1093/plphys/kiae593
[30]

Jin Z, Li P, Huang R, Li L, Zhang M, et al. 2025. Natural variation in PtobZIP18 confers the trade-off between stem growth and drought tolerance in Populus. Plant Biotechnology Journal 23:4633−49

doi: 10.1111/pbi.70261
[31]

Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytologist 240:1848−67

doi: 10.1111/nph.19251
[32]

Wang HL, Yang Q, Tan S, Wang T, Zhang Y, et al. 2022. Regulation of cytokinin biosynthesis using PtRD26pro-IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus. Journal of Integrative Plant Biology 64:771−86

doi: 10.1111/jipb.13218
[33]

Jin X, Zhao K, Hu J, Gailing O, Zhou L, et al. 2024. PagMYB73A enhances poplar salt tolerance by facilitating adventitious roots elongation and stomata density. Forestry Research 4:e003

doi: 10.48130/forres-0023-0032
[34]

Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, et al. 2005. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiology 139:509−18

doi: 10.1104/pp.105.063461
[35]

Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, et al. 1995. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. The Plant Cell 7:1773−85

doi: 10.1105/tpc.7.11.1773
[36]

Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, et al. 2010. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. The Plant Cell 22:2171−83

doi: 10.1105/tpc.110.074823
[37]

Harris JC, Hrmova M, Lopato S, Langridge P. 2011. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytologist 190:823−37

doi: 10.1111/j.1469-8137.2011.03733.x
[38]

Valdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P. 2012. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Molecular Biology 80:405−18

doi: 10.1007/s11103-012-9956-4
[39]

Li Y, Bai B, Wen F, Zhao M, Xia Q, et al. 2019. Genome-wide identification and expression analysis of HD-ZIP I gene subfamily in Nicotiana tabacum. Genes 10:575

doi: 10.3390/genes10080575
[40]

Olsson A, Engström P, Söderman E. 2004. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Molecular Biology 55:663−77

doi: 10.1007/s11103-004-1581-4
[41]

Ré DA, Capella M, Bonaventure G, Chan RL. 2014. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biology 14:150

doi: 10.1186/1471-2229-14-150
[42]

Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E. 2002. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. The EMBO Journal 21:3029−38

doi: 10.1093/emboj/cdf316
[43]

Zhao S, Wang H, Jia X, Gao H, Mao K, et al. 2021. The HD-Zip I transcription factor MdHB7-like confers tolerance to salinity in transgenic apple (Malus domestica). Physiologia Plantarum 172:1452−64

doi: 10.1111/ppl.13330
[44]

Yao W, Li C, Lin S, Wang J, Zhou B, et al. 2020. Transcriptome analysis of salt-responsive and wood-associated NACs in Populus simonii × Populus nigra. BMC Plant Biology 20:317

doi: 10.1186/s12870-020-02507-z
[45]

He F, Wang HL, Li HG, Su Y, Li S, et al. 2018. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnology Journal 16:1514−28

doi: 10.1111/pbi.12893
[46]

Jiang Y, Tong S, Chen N, Liu B, Bai Q, et al. 2021. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. The Plant Journal 105:1258−73

doi: 10.1111/tpj.15109
[47]

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274−84

doi: 10.1016/j.molp.2015.04.007
[48]

Liu B, Zhang J, Wang L, Li J, Zheng H, et al. 2014. A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns. Journal of Experimental Botany 65:2437−48

doi: 10.1093/jxb/eru129
[49]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[50]

Lin YC, Li W, Chen H, Li Q, Sun YH, et al. 2014. A simple improved-throughput xylem protoplast system for studying wood formation. Nature Protocols 9:2194−205

doi: 10.1038/nprot.2014.147
[51]

He F, Xu C, Fu X, Shen Y, Guo L, et al. 2018. The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiology 177:775−91

doi: 10.1104/pp.17.01559
[52]

Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, et al. 2007. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302−5

doi: 10.1126/science.1146281
[53]

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

doi: 10.1186/1746-4811-1-13
[54]

Norkunas K, Harding R, Dale J, Dugdale B. 2018. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14:71

doi: 10.1186/s13007-018-0343-2
[55]

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650−67

doi: 10.1038/nprot.2016.095
[56]

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638
[57]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[58]

Falcon S, Gentleman R. 2007. Using GOstats to test gene lists for GO term association. Bioinformatics 23:257−58

doi: 10.1093/bioinformatics/btl567
[59]

Liu JG, Han X, Yang T, Cui WH, Wu AM, et al. 2019. Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biology 19:367

doi: 10.1186/s12870-019-1952-2
[60]

Fiallos-Salguero MS, Li J, Li Y, Xu J, Fang P, et al. 2023. Identification of AREB/ABF gene family involved in the response of ABA under salt and drought stresses in jute (Corchorus olitorius L.). Plants 12:1161

doi: 10.3390/plants12051161
[61]

Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, et al. 2004. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. The Plant Journal 37:21−33

doi: 10.1046/j.1365-313X.2003.01930.x
[62]

Ma Y, Cao J, He J, Chen Q, Li X, et al. 2018. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. International Journal of Molecular Sciences 19:3643

doi: 10.3390/ijms19113643
[63]

Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, et al. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology 134:1439−49

doi: 10.1104/pp.103.037614
[64]

Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW. 2010. ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signaling & Behavior 5:428−32

doi: 10.4161/psb.5.4.10847
[65]

He F, Niu MX, Feng CH, Li HG, Su Y, et al. 2020. PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in Populus. Tree Physiology 40:1292−311

doi: 10.1093/treephys/tpaa050
[66]

Lu X, Dun H, Lian C, Zhang X, Yin W, et al. 2017. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica. Plant Physiology and Biochemistry 115:418−38

doi: 10.1016/j.plaphy.2017.04.009
[67]

Jia F, Qi S, Li H, Liu P, Li P, et al. 2014. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochemical and Biophysical Research Communications 454:505−11

doi: 10.1016/j.bbrc.2014.10.136
[68]

Liu YC, Wu YR, Huang XH, Sun J, Xie Q. 2011. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Molecular Plant 4:938−46

doi: 10.1093/mp/ssr030
[69]

Tong S, Chen N, Wang D, Ai F, Liu B, et al. 2021. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus. Plant Biotechnology Journal 19:2561−75

doi: 10.1111/pbi.13681
[70]

Chapman JM, Muhlemann JK, Gayomba SR, Muday GK. 2019. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chemical Research in Toxicology 32:370−96

doi: 10.1021/acs.chemrestox.9b00028
[71]

Wang HQ, Zhao XY, Xuan W, Wang P, Zhao FJ. 2023. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. Molecular Plant 16:1678−94

doi: 10.1016/j.molp.2023.09.007
[72]

Liu C, Lin JZ, Wang Y, Tian Y, Zheng HP, et al. 2023. The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. The Plant Cell 35:3604−25

doi: 10.1093/plcell/koad167
[73]

Xie Z, Jin L, Sun Y, Zhan C, Tang S, et al. 2024. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Communications 5:100782

doi: 10.1016/j.xplc.2023.100782
[74]

Sun X, Zheng HX, Li S, Gao Y, Dang Y, et al. 2023. MicroRNAs balance growth and salt stress responses in sweet sorghum. Plant Journal 113:677−97

doi: 10.1111/tpj.16065
[75]

Du P, Wang Q, Yuan DY, Chen SS, Su YN, et al. 2023. WRKY transcription factors and OBERON histone-binding proteins form complexes to balance plant growth and stress tolerance. The EMBO Journal 42:e113639

doi: 10.15252/embj.2023113639
[76]

Yuan W, Yao F, Liu Y, Xiao H, Sun S, et al. 2024. Identification of the xyloglucan endotransglycosylase/hydrolase genes and the role of PagXTH12 in drought resistance in poplar. Forestry Research 4:e039

doi: 10.48130/forres-0024-0036
[77]

Liu N, Yu R, Deng W, Hu R, He G, et al. 2024. MsHDZ23, a novel Miscanthus HD-ZIP transcription factor, participates in tolerance to multiple abiotic stresses. International Journal of Molecular Sciences 25:3253

doi: 10.3390/ijms25063253
[78]

Chen S, Polle A. 2010. Salinity tolerance of Populus. Plant Biology 12:317−33

doi: 10.1111/j.1438-8677.2009.00301.x
[79]

Li Q, Wu Q, Wang A, Lv B, Dong Q, et al. 2019. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiology and Biochemistry 144:312−23

doi: 10.1016/j.plaphy.2019.10.003
[80]

Liu J, Chu J, Ma C, Jiang Y, Ma Y, et al. 2019. Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis. Plant Cell Reports 38:587−96

doi: 10.1007/s00299-019-02389-y
[81]

Ma QJ, Sun MH, Lu J, Liu YJ, You CX, et al. 2017. An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. Plant, Cell & Environment 40:2207−19

doi: 10.1111/pce.13013
[82]

Zhao BY, Hu YF, Li JJ, Yao X, Liu KD. 2016. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Botanical Studies 57:12

doi: 10.1186/s40529-016-0127-9
[83]

Liu Z, Zhang T, Xu R, Liu B, Han Y, et al. 2024. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla. Plant Biotechnology Journal 22:131−47

doi: 10.1111/pbi.14173
[84]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[85]

Dietz KJ, Mittler R, Noctor G. 2016. Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiology 171:1535−39

doi: 10.1104/pp.16.00938
[86]

Ahmad P, Sarwat M, Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology 51:167−73

doi: 10.1007/BF03030694
[87]

Shi H, Ye T, Chen F, Cheng Z, Wang Y, et al. 2013. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Journal of Experimental Botany 64:1367−79

doi: 10.1093/jxb/ers400
[88]

Zhang X, Cheng Z, Fan G, Zhu D, Tan B, et al. 2024. Transcription factor McHB7 improves ice plant drought tolerance through ABA signaling pathway. International Journal of Molecular Sciences 25:4569

doi: 10.3390/ijms25084569
[89]

Li Z, Woo HR, Guo H. 2018. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. Journal of Experimental Botany 69:811−23

doi: 10.1093/jxb/erx345
[90]

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, et al. 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell 17:444−63

doi: 10.1105/tpc.104.028316
[91]

Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual MB, Avila C, et al. 2015. Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC Plant Biology 15:20

doi: 10.1186/s12870-014-0365-5
[92]

Li G, Chen Q, Bai Q, Feng Y, Mao K, et al. 2023. LncRNA expression analysis by comparative transcriptomics among closely related poplars and their regulatory roles in response to salt stress. Tree Physiology 43:1233−49

doi: 10.1093/treephys/tpad041