[1]

Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, et al. 2018. Triggers of tree mortality under drought. Nature 558:531−39

doi: 10.1038/s41586-018-0240-x
[2]

Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, et al. 2016. Progressive forest canopy water loss during the 2012–2015 California drought. Proceedings of the National Academy of Sciences of the United States of America 113:E249−E255

doi: 10.1073/pnas.1523397113
[3]

Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, et al. 2022. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology 73:673−702

doi: 10.1146/annurev-arplant-102820-012804
[4]

Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, et al. 2014. Global warming and changes in drought. Nature Climate Change 4:17−22

doi: 10.1038/nclimate2067
[5]

Mavromatis T. 2010. Use of drought indices in climate change impact assessment studies: an application to Greece. International Journal of Climatology 30:1336−48

doi: 10.1002/joc.1976
[6]

Wu B, Ma Z, Yan N. 2020. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sensing of Environment 244:111813

doi: 10.1016/j.rse.2020.111813
[7]

Ali M, Deo RC, Maraseni T, Downs NJ. 2019. Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms. Journal of Hydrology 576:164−84

doi: 10.1016/j.jhydrol.2019.06.032
[8]

Wan W, Liu Z, Li J, Xu J, Wu H, et al. 2022. Spatiotemporal patterns of maize drought stress and their effects on biomass in the Northeast and North China Plain from 2000 to 2019. Agricultural and Forest Meteorology 315:108821

doi: 10.1016/j.agrformet.2022.108821
[9]

Wan W, Liu Z, Li K, Wang G, Wu H, et al. 2021. Drought monitoring of the maize planting areas in Northeast and North China Plain. Agricultural Water Management 245:106636

doi: 10.1016/j.agwat.2020.106636
[10]

Son NT, Chen CF, Chen CR, Chang LY, Minh VQ. 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation 18:417−27

doi: 10.1016/j.jag.2012.03.014
[11]

Liu L, Liao J, Chen X, Zhou G, Su Y, et al. 2017. The microwave temperature vegetation drought index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003–2010). Remote Sensing of Environment 199:302−20

doi: 10.1016/j.rse.2017.07.012
[12]

Li Z, Han Y, Hao T. 2020. Assessing the consistency of remotely sensed multiple drought indices for monitoring drought phenomena in continental China. IEEE Transactions on Geoscience and Remote Sensing 58:5490−502

doi: 10.1109/tgrs.2020.2966658
[13]

Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, et al. 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:538−41

doi: 10.1038/s41586-018-0539-7
[14]

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752−55

doi: 10.1038/nature11688
[15]

Rellán-Álvarez R, Lobet G, Dinneny JR. 2016. Environmental control of root system biology. Annual Review of Plant Biology 67:619−42

doi: 10.1146/annurev-arplant-043015-111848
[16]

Wang X, Lu D, Schönbeck L, Han Y, Bai S, et al. 2025. Contrasting effects of prolonged drought and nitrogen addition on growth and non-structural carbohydrate dynamics in coexisting Pinus koraiensis and Fraxinus mandshurica saplings. Forestry Research 5:e003

doi: 10.48130/forres-0025-0002
[17]

Rodrigues J, Inzé D, Nelissen H, Saibo NJM. 2019. Source–sink regulation in crops under water deficit. Trends in Plant Science 24:652−63

doi: 10.1016/j.tplants.2019.04.005
[18]

Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, et al. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters 20:539−53

doi: 10.1111/ele.12748
[19]

Zhao H, Wu J, Wang A, Guan D, Liu Y. 2022. Microtopography mediates the climate – growth relationship and growth resilience to drought of Pinus tabulaeformis plantation in the hilly site. Frontiers in Plant Science 13:1060011

doi: 10.3389/fpls.2022.1060011
[20]

Aldea J, Ruiz-Peinado R, del Río M, Pretzsch H, Heym M, et al. 2022. Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce. Journal of Ecology 110:2673−83

doi: 10.1111/1365-2745.13978
[21]

Khamis G, Hamada A, Schaarschmidt F, Beemster GTS, Asard H, et al. 2019. Morphological and biochemical responses of Balanites aegyptiaca to drought stress and recovery are provenance-dependent. Journal of Agronomy and Crop Science 205:490−507

doi: 10.1111/jac.12340
[22]

Du B, Jansen K, Kleiber A, Eiblmeier M, Kammerer B, et al. 2016. A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress. Tree Physiology 36:148−63

doi: 10.1093/treephys/tpv105
[23]

Li S, Huang X, Zheng R, Zhang M, Zou Z, et al. 2024. Xylem plasticity of root, stem, and branch in Cunninghamia lanceolata under drought stress: implications for whole-plant hydraulic integrity. Frontiers in Plant Science 15:1308360

doi: 10.3389/fpls.2024.1308360
[24]

Ren X, Jia J, Hu Y, Han B, Peng P, et al. 2024. Cunninghamia lanceolata cannot depend solely on xylem embolism resistance to withstand prolonged seasonal drought. Journal of Hydrology 645:132255

doi: 10.1016/j.jhydrol.2024.132255
[25]

Gao S, Cai ZY, Yang CC, Luo JX, Zhang S. 2021. Provenance-specific ecophysiological responses to drought in Cunninghamia lanceolata. Journal of Plant Ecology 14:1060−72

doi: 10.1093/jpe/rtab045
[26]

Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36:1627−39

doi: 10.1021/ac60214a047
[27]

Holzman ME, Rivas R, Piccolo MC. 2014. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation 28:181−92

doi: 10.1016/j.jag.2013.12.006
[28]

Dhorde AG, Patel NR. 2016. Spatio-temporal variation in terminal drought over western India using dryness index derived from long-term MODIS data. Ecological Informatics 32:28−38

doi: 10.1016/j.ecoinf.2015.12.007
[29]

Wang A, Shi X. 2021. A multilayer soil moisture dataset based on the gravimetric method in China. Science Data Bank 2021:00539

doi: 10.11922/sciencedb.00539
[30]

Li C, Adu B, Wu J, Qin G, Li H, et al. 2022. Spatial and temporal variations of drought in Sichuan Province from 2001 to 2020 based on modified temperature vegetation dryness index (TVDI). Ecological Indicators 139:108883

doi: 10.1016/j.ecolind.2022.108883
[31]

Sandholt I, Rasmussen K, Andersen J. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79:213−24

doi: 10.1016/s0034-4257(01)00274-7
[32]

Rossi E, Rogan J, Schneider L. 2013. Mapping forest damage in northern Nicaragua after Hurricane Felix (2007) using MODIS enhanced vegetation index data. GIScience & Remote Sensing 50:385−99

doi: 10.1080/15481603.2013.820066
[33]

Yan F, Zhang Y, Wang X, Xu Z, Liang Y, et al. 2025. Characteristics of spatial and temporal non-stationarity of groundwater storage in different basins of China and its driving mechanisms. Journal of Hydrology 655:132882

doi: 10.1016/j.jhydrol.2025.132882
[34]

Kanehisa M. 2019. Toward understanding the origin and evolution of cellular organisms. Protein Science, 28:1947−51

doi: 10.1002/pro.3715
[35]

Stampfli A, Bloor JMG, Fischer M, Zeiter M. 2018. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biology 24:2021−34

doi: 10.1111/gcb.14046
[36]

An N, Tang CS, Xu SK, Gong XP, Shi B, et al. 2018. Effects of soil characteristics on moisture evaporation. Engineering Geology 239:126−35

doi: 10.1016/j.enggeo.2018.03.028
[37]

Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Burguera M, et al. 2020. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Climate Change 11:e632

doi: 10.1002/wcc.632
[38]

Bansal S, Harrington CA, Gould PJ, St Clair JB. 2015. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biology 21:947−58

doi: 10.1111/gcb.12719
[39]

Solé-Medina A, Robledo-Arnuncio JJ, Ramírez-Valiente JA. 2022. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea). New Phytologist 234:462−78

doi: 10.1111/nph.17968
[40]

Sánchez-Gómez D, Velasco-Conde T, Cano-Martín FJ, Ángeles Guevara M, Teresa Cervera M, et al. 2011. Inter-clonal variation in functional traits in response to drought for a genetically homogeneous Mediterranean conifer. Environmental and Experimental Botany 70:104−9

doi: 10.1016/j.envexpbot.2010.08.007
[41]

Shen P, Wang X, Zohner CM, Peñuelas J, Zhou Y, et al. 2024. Biodiversity buffers the response of spring leaf unfolding to climate warming. Nature Climate Change 14:863−68

doi: 10.1038/s41558-024-02035-w
[42]

Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M. 2014. A new look at water transport regulation in plants. New Phytologist 204:105−15

doi: 10.1111/nph.12912
[43]

Blum A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment 40:4−10

doi: 10.1111/pce.12800
[44]

Kaya C, Ashraf M, Wijaya L, Ahmad P. 2019. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology and Biochemistry 143:119−28

doi: 10.1016/j.plaphy.2019.08.024
[45]

Li L, Li Y, Ding G. 2024. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC Genomics 25:166

doi: 10.1186/s12864-024-10054-2
[46]

Kerr KL, Meinzer FC, McCulloh KA, Woodruff DR, Marias DE. 2015. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Tree Physiology 35:535−48

doi: 10.1093/treephys/tpv034
[47]

Seth P, Sebastian J. 2024. Plants and global warming: challenges and strategies for a warming world. Plant Cell Reports 43:27

doi: 10.1007/s00299-023-03083-w
[48]

Hao F, Zhao S, Dong H, Zhang H, Sun L, et al. 2010. Nia1 and Nia2 are involved in exogenous salicylic acid‐induced nitric oxide generation and stomatal closure in Arabidopsis. Journal of Integrative Plant Biology 52:298−307

doi: 10.1111/j.1744-7909.2010.00920.x
[49]

Gupta A, Rico-Medina A, Caño-Delgado AI. 2020. The physiology of plant responses to drought. Science 368:266−69

doi: 10.1126/science.aaz7614
[50]

Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, et al. 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. The Plant Journal 91:371−93

doi: 10.1111/tpj.13567
[51]

Wei YS, Javed T, Liu TT, Ali A, Gao SJ, et al. 2025. Mechanisms of abscisic acid (ABA)-mediated plant defense responses: an updated review. Plant Stress 15:100724

doi: 10.1016/j.stress.2024.100724
[52]

Kim JI, Baek D, Park HC, Chun HJ, Oh DH, et al. 2013. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant 6:337−49

doi: 10.1093/mp/sss100
[53]

Sharma A, Gupta A, Ramakrishnan M, Ha CV, Zheng B, et al. 2023. Roles of abscisic acid and auxin in plants during drought: a molecular point of view. Plant Physiology and Biochemistry 204:108129

doi: 10.1016/j.plaphy.2023.108129
[54]

Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment 36:1242−55

doi: 10.1111/pce.12061
[55]

Okazaki Y, Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. The Plant Journal 79:584−96

doi: 10.1111/tpj.12556
[56]

Hao GY, Jones TJ, Luton C, Zhang YJ, Manzane E, et al. 2009. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiology 29:697−705

doi: 10.1093/treephys/tpp005
[57]

Reich PB. 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. Journal of Ecology 102:275−301

doi: 10.1111/1365-2745.12211
[58]

Liu C, Chen Z, Liu S, Cao K, Niu B, et al. 2023. Multi-year throughfall reduction enhanced the growth and non-structural carbohydrate storage of roots at the expenses of above-ground growth in a warm-temperate natural oak forest. Forest Ecosystems 10:100118

doi: 10.1016/j.fecs.2023.100118
[59]

Chen YJ, Schnitzer SA, Zhang YJ, Fan ZX, Goldstein G, et al. 2017. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Functional Ecology 31:306−17

doi: 10.1111/1365-2435.12724