[1]

Fragkos M, Ganier O, Coulombe P, Méchali M. 2015. DNA replication origin activation in space and time. Nature Reviews Molecular Cell Biology 16:360−74

doi: 10.1038/nrm4002
[2]

Matthews HK, Bertoli C, de Bruin RAM. 2022. Cell cycle control in cancer. Nature Reviews Molecular Cell Biology 23:74−88

doi: 10.1038/s41580-021-00404-3
[3]

Fei L, Xu H. 2018. Role of MCM2−7 protein phosphorylation in human cancer cells. Cell & Bioscience 8:43

doi: 10.1186/s13578-018-0242-2
[4]

Bellelli R, Boulton SJ. 2021. Spotlight on the replisome: aetiology of DNA replication-associated genetic diseases. Trends in Genetics 37:317−36

doi: 10.1016/j.tig.2020.09.008
[5]

Andrs M, Stoy H, Boleslavska B, Chappidi N, Kanagaraj R, et al. 2023. Excessive reactive oxygen species induce transcription-dependent replication stress. Nature Communications 14:1791

doi: 10.1038/s41467-023-37341-y
[6]

Li N, Gao N, Zhai Y. 2023. DDK promotes DNA replication initiation: mechanistic and structural insights. Current Opinion in Structural Biology 78:102504

doi: 10.1016/j.sbi.2022.102504
[7]

Saldivar JC, Cortez D, Cimprich KA. 2017. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology 18:622−36

doi: 10.1038/nrm.2017.67
[8]

Song H, Guo Z, Xie K, Liu X, Yang X, et al. 2025. Crotonylation of MCM6 enhances chemotherapeutics sensitivity of breast cancer via inducing DNA replication stress. Cell Proliferation 58:e13759

doi: 10.1111/cpr.13759
[9]

Kirova DG, Judasova K, Vorhauser J, Zerjatke T, Leung JK, et al. 2022. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Developmental Cell 57:1712−1727.E9

doi: 10.1016/j.devcel.2022.06.008
[10]

Enomoto T, Tanuma S, Yamada MA. 1981. ATP requirement for the processes of DNA replication in isolated HeLa cell nuclei. Journal of Biochemistry 89:801−7

doi: 10.1093/oxfordjournals.jbchem.a133262
[11]

Somyajit K, Gupta R, Sedlackova H, Neelsen KJ, Ochs F, et al. 2017. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science 358:797−802

doi: 10.1126/science.aao3172
[12]

Li X, Qian X, Jiang H, Xia Y, Zheng Y, et al. 2018. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication. Molecular Cell 72:650−660.E8

doi: 10.1016/j.molcel.2018.09.007
[13]

Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 22:4642

doi: 10.3390/ijms22094642
[14]

Guertin DA, Wellen KE. 2023. Acetyl-CoA metabolism in cancer. Nature Reviews Cancer 23:156−72

doi: 10.1038/s41568-022-00543-5
[15]

Pan C, Li B, Simon MC. 2021. Moonlighting functions of metabolic enzymes and metabolites in cancer. Molecular Cell 81:3760−74

doi: 10.1016/j.molcel.2021.08.031
[16]

Pai CC, Hsu KF, Durley SC, Keszthelyi A, Kearsey SE, et al. 2019. An essential role for dNTP homeostasis following CDK-induced replication stress. Journal of Cell Science 132:jcs226969

doi: 10.1242/jcs.226969
[17]

Buckland RJ, Watt DL, Chittoor B, Nilsson AK, Kunkel TA, et al. 2014. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. PLoS Genetics 10:e1004846

doi: 10.1371/journal.pgen.1004846
[18]

Bhat KP, Cortez D. 2018. RPA and RAD51: fork reversal, fork protection, and genome stability. Nature Structural & Molecular Biology 25:446−53

doi: 10.1038/s41594-018-0075-z
[19]

Blackford AN, Jackson SP. 2017. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Molecular Cell 66:801−17

doi: 10.1016/j.molcel.2017.05.015
[20]

Gupta N, Huang TT, Horibata S, Lee JM. 2022. Cell cycle checkpoints and beyond: exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Pharmacological Research 178:106162

doi: 10.1016/j.phrs.2022.106162
[21]

Petermann E, Woodcock M, Helleday T. 2010. Chk1 promotes replication fork progression by controlling replication initiation. Proceedings of the National Academy of Sciences of the United States of America 107:16090−95

doi: 10.1073/pnas.1005031107
[22]

Katsuno Y, Suzuki A, Sugimura K, Okumura K, Zineldeen DH, et al. 2009. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 106:3184−89

doi: 10.1073/pnas.0809350106
[23]

Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, et al. 2013. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088−103

doi: 10.1016/j.cell.2013.10.043
[24]

Chabes A, Stillman B. 2007. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 104:1183−88

doi: 10.1073/pnas.0610585104
[25]

Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, et al. 2016. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiology and Molecular Biology Reviews 73(1):134−54

doi: 10.1128/MMBR.00034-08
[26]

Sabouri N, Viberg J, Goyal DK, Johansson E, Chabes A. 2008. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Research 36:5660−67

doi: 10.1093/nar/gkn555
[27]

Lis ET, O'Neill BM, Gil-Lamaignere C, Chin JK, Romesberg FE. 2008. Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair 7:801−10

doi: 10.1016/j.dnarep.2008.02.007
[28]

Harada Y, Mizote Y, Suzuki T, Hirayama A, Ikeda S, et al. 2023. Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells. eLife 12:e83870

doi: 10.7554/eLife.83870
[29]

Charbon G, Mendoza-Chamizo B, Campion C, Li X, Jensen PR, et al. 2021. Energy starvation induces a cell cycle arrest in Escherichia coli by triggering degradation of the DnaA initiator protein. Frontiers in Molecular Biosciences 8:629953

doi: 10.3389/fmolb.2021.629953
[30]

Coster G, Frigola J, Beuron F, Morris EP, Diffley JFX. 2014. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Molecular Cell 55:666−77

doi: 10.1016/j.molcel.2014.06.034
[31]

Klemm RD, Bell SP. 2001. ATP bound to the origin recognition complex is important for preRC formation. Proceedings of the National Academy of Sciences of the United States of America 98:8361−67

doi: 10.1073/pnas.131006898
[32]

Kawakami H, Katayama T. 2010. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochemistry and Cell Biology 88:49−62

doi: 10.1139/O09-154
[33]

Martin IV, MacNeill SA. 2002. ATP-dependent DNA ligases. Genome Biology 3:reviews3005.1

doi: 10.1186/gb-2002-3-4-reviews3005
[34]

Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology 13:251−62

doi: 10.1038/nrm3311
[35]

Li S, Lavagnino Z, Lemacon D, Kong L, Ustione A, et al. 2019. Ca2+-stimulated AMPK-dependent phosphorylation of Exo1 protects stressed replication forks from aberrant resection. Molecular Cell 74:1123−1137.E6

doi: 10.1016/j.molcel.2019.04.003
[36]

Kim SH, Kim SC, Ku JL. 2017. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 8:56546−57

doi: 10.18632/oncotarget.17798
[37]

Somyajit K, Spies J, Coscia F, Kirik U, Rask MB, et al. 2021. Homology-directed repair protects the replicating genome from metabolic assaults. Developmental Cell 56:461−477.E7

doi: 10.1016/j.devcel.2021.01.011
[38]

Chen Z, Odstrcil EA, Tu BP, McKnight SL. 2007. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916−19

doi: 10.1126/science.1140958
[39]

Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. 2010. ATM activation by oxidative stress. Science 330:517−21

doi: 10.1126/science.1192912
[40]

Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21:363−83

doi: 10.1038/s41580-020-0230-3
[41]

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, et al. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology 39:44−84

doi: 10.1016/j.biocel.2006.07.001
[42]

Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metabolism 23:27−47

doi: 10.1016/j.cmet.2015.12.006
[43]

Baker SA, Rutter J. 2023. Metabolites as signalling molecules. Nature Reviews Molecular Cell Biology 24:355−74

doi: 10.1038/s41580-022-00572-w
[44]

Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, et al. 2024. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Reviews in the Neurosciences 35:813−38

doi: 10.1515/revneuro-2024-0054
[45]

Li M, Rehman AU, Liu Y, Chen K, Lu S. 2021. Dual roles of ATP-binding site in protein kinases: orthosteric inhibition and allosteric regulation. Advances in Protein Chemistry and Structural Biology 124:87−119

doi: 10.1016/bs.apcsb.2020.09.005
[46]

He W, Li Q, Li X. 2023. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochimica et Biophysica Acta (BBA) − Reviews on Cancer 1878:188837

doi: 10.1016/j.bbcan.2022.188837
[47]

Lan R, Wang Q. 2020. Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cellular and Molecular Life Sciences 77:637−49

doi: 10.1007/s00018-019-03296-x
[48]

Chen G, Luo Y, Warncke K, Sun Y, Yu DS, et al. 2019. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nature Communications 10:3213

doi: 10.1038/s41467-019-11214-9
[49]

Unnikrishnan A, Gafken PR, Tsukiyama T. 2010. Dynamic changes in histone acetylation regulate origins of DNA replication. Nature Structural & Molecular Biology 17:430−37

doi: 10.1038/nsmb.1780
[50]

Miotto B, Struhl K. 2010. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin. Molecular Cell 37:57−66

doi: 10.1016/j.molcel.2009.12.012
[51]

Feng Y, Vlassis A, Roques C, Lalonde M, González-Aguilera C, et al. 2016. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. The EMBO Journal 35:176−92

doi: 10.15252/embj.201591293
[52]

Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B, et al. 2008. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134:244−55

doi: 10.1016/j.cell.2008.06.018
[53]

Das C, Lucia MS, Hansen KC, Tyler JK. 2009. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113−17

doi: 10.1038/nature07861
[54]

Fatoba ST, Tognetti S, Berto M, Leo E, Mulvey CM, et al. 2013. Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation. Nucleic Acids Research 41:4065−79

doi: 10.1093/nar/gkt131
[55]

Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, et al. 2014. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Research 42:8433−48

doi: 10.1093/nar/gku533
[56]

Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. 2023. Protein phosphorylation: a molecular switch in plant signaling. Cell Reports 42:112729

doi: 10.1016/j.celrep.2023.112729
[57]

Singh B, Wu PJ. 2019. Regulation of the program of DNA replication by CDK: new findings and perspectives. Current Genetics 65:79−85

doi: 10.1007/s00294-018-0860-6
[58]

Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, et al. 2006. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. Journal of Biological Chemistry 281:39249−61

doi: 10.1074/jbc.M608935200
[59]

Wang X, Liu L, Chen M, Quan Y, Zhang J, et al. 2024. S-CDK-regulated bipartite interaction of Mcm10 with MCM is essential for DNA replication. Frontiers in Cell and Developmental Biology 12:1420033

doi: 10.3389/fcell.2024.1420033
[60]

Chadha GS, Gambus A, Gillespie PJ, Blow JJ. 2016. Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle 15:2183−95

doi: 10.1080/15384101.2016.1199305
[61]

Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, et al. 2007. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328−32

doi: 10.1038/nature05465
[62]

Dhingra N, Bruck I, Smith S, Ning B, Kaplan DL. 2015. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. Journal of Biological Chemistry 290:7586−601

doi: 10.1074/jbc.M115.640383
[63]

Barnieh FM, Morais GR, Loadman PM, Falconer RA, El-Khamisy SF. 2024. Hypoxia-responsive prodrug of ATR inhibitor, AZD6738, selectively eradicates treatment-resistant cancer cells. Advanced Science 11:e2403831

doi: 10.1002/advs.202403831
[64]

Chen Y, Poon RYC. 2008. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Frontiers in Bioscience 13:5016−29

doi: 10.2741/3060
[65]

Dai X, Ren T, Zhang Y, Nan N. 2021. Methylation multiplicity and its clinical values in cancer. Expert Reviews in Molecular Medicine 23:e2

doi: 10.1017/erm.2021.4
[66]

Yazar V, Ruf WP, Knehr A, Günther K, Ammerpohl O, et al. 2023. DNA methylation analysis in monozygotic twins discordant for ALS in blood cells. Epigenetics Insights 16:25168657231172159

doi: 10.1177/25168657231172159
[67]

Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. 2023. DNA methylation in cancer: epigenetic view of dietary and lifestyle factors. Epigenetics Insights 16:1−11

doi: 10.1177/25168657231199893
[68]

Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. 2021. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nature Reviews Drug Discovery 20:265−86

doi: 10.1038/s41573-020-00108-x
[69]

Mattei AL, Bailly N, Meissner A. 2022. DNA methylation: a historical perspective. Trends Genetics 38:676−707

doi: 10.1016/j.tig.2022.03.010
[70]

Estève PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, et al. 2006. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes & Development 20:3089−103

doi: 10.1101/gad.1463706
[71]

Unterberger A, Andrews SD, Weaver ICG, Szyf M. 2006. DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Molecular and Cellular Biology 26:7575−86

doi: 10.1128/MCB.01887-05
[72]

Pryde F, Jain D, Kerr A, Curley R, Mariotti FR, et al. 2009. H3 K36 methylation helps determine the timing of Cdc45 association with replication origins. PLoS One 4:e5882

doi: 10.1371/journal.pone.0005882
[73]

Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, et al. 2010. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nature Cell Biology 12:1086−93

doi: 10.1038/ncb2113
[74]

A P, Xu X, Wang C, Yang J, Wang S, et al. 2018. EZH2 promotes DNA replication by stabilizing interaction of POLδ and PCNA via methylation-mediated PCNA trimerization. Epigenetics & Chromatin 11:44

doi: 10.1186/s13072-018-0213-1
[75]

Du Q, Smith GC, Luu PL, Ferguson JM, Armstrong NJ, et al. 2021. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Reports 36:109722

doi: 10.1016/j.celrep.2021.109722
[76]

Takebayashi SI, Ryba T, Wimbish K, Hayakawa T, Sakaue M, et al. 2021. The temporal order of DNA replication shaped by mammalian DNA methyltransferases. Cells 10:266

doi: 10.3390/cells10020266
[77]

Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, et al. 2012. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier−Gorlin syndrome. Nature 484:115−9

doi: 10.1038/nature10956
[78]

Morales MM, Pratt MR. 2024. The post-translational modification O-GlcNAc is a sensor and regulator of metabolism. Open Biology 14:240209

doi: 10.1098/rsob.240209
[79]

Yang X, Qian K. 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nature Reviews Molecular Cell Biology 18:452−65

doi: 10.1038/nrm.2017.22
[80]

Forma E, Jóźwiak P, Bryś M, Krześlak A. 2014. The potential role of O-GlcNAc modification in cancer epigenetics. Cellular & Molecular Biology Letters 19:438−60

doi: 10.2478/s11658-014-0204-6
[81]

Banerjee PS, Lagerlöf O, Hart GW. 2016. Roles of O-GlcNAc in chronic diseases of aging. Molecular Aspects of Medicine 51:1−15

doi: 10.1016/j.mam.2016.05.005
[82]

Xu S, Tong M, Suttapitugsakul S, Wu R. 2022. Spatial and temporal proteomics reveals the distinct distributions and dynamics of O-GlcNAcylated proteins. Cell Reports 39:110946

doi: 10.1016/j.celrep.2022.110946
[83]

Zou Y, Pei J, Long H, Lan L, Dong K, et al. 2023. H4S47 O-GlcNAcylation regulates the activation of mammalian replication origins. Nature Structural & Molecular Biology 30:800−11

doi: 10.1038/s41594-023-00998-6
[84]

Hayakawa K, Hirosawa M, Tani R, Yoneda C, Tanaka S, et al. 2017. H2A O-GlcNAcylation at serine 40 functions genomic protection in association with acetylated H2AZ or γH2AX. Epigenetics & Chromatin 10:51

doi: 10.1186/s13072-017-0157-x
[85]

Xu Q, Yang C, Du Y, Chen Y, Liu H, et al. 2014. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Research 42:5594−604

doi: 10.1093/nar/gku236
[86]

Sakabe K, Wang Z, Hart GW. 2010. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proceedings of the National Academy of Sciences of the United States of America 107:19915−20

doi: 10.1073/pnas.1009023107
[87]

Leturcq M, Mortuaire M, Hardivillé S, Schulz C, Lefebvre T, et al. 2018. O-GlcNAc transferase associates with the MCM2−7 complex and its silencing destabilizes MCM−MCM interactions. Cellular and Molecular Life Sciences 75:4321−39

doi: 10.1007/s00018-018-2874-0
[88]

Gamper AM, Rofougaran R, Watkins SC, Greenberger JS, Beumer JH, et al. 2013. ATR kinase activation in G1 phase facilitates the repair of ionizing radiation-induced DNA damage. Nucleic Acids Research 41:10334−44

doi: 10.1093/nar/gkt833
[89]

Zhao J, Shao G, Lu X, Lv Z, Dong MQ, et al. 2024. O-GlcNAcylation of RPA2 at S4/S8 antagonizes phosphorylation and regulates checkpoint activation during replication stress. Journal of Biological Chemistry 300:107956

doi: 10.1016/j.jbc.2024.107956
[90]

Guo D, Meng Y, Zhao G, Wu Q, Lu Z. 2025. Moonlighting functions of glucose metabolic enzymes and metabolites in cancer. Nature Reviews Cancer 25:426−46

doi: 10.1038/s41568-025-00800-3
[91]

Xu D, Shao F, Bian X, Meng Y, Liang T, et al. 2021. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metabolism 33:33−50

doi: 10.1016/j.cmet.2020.12.015
[92]

Lu Z, Hunter T. 2018. Metabolic kinases moonlighting as protein kinases. Trends in Biochemical Sciences 43:301−10

doi: 10.1016/j.tibs.2018.01.006
[93]

Fornalewicz K, Wieczorek A, Węgrzyn G, Łyżeń R. 2017. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts. Gene 635:33−38

doi: 10.1016/j.gene.2017.09.005
[94]

Konieczna A, Szczepańska A, Sawiuk K, Węgrzyn G, Łyżeń R. 2015. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biology 16:16

doi: 10.1186/s12860-015-0062-8
[95]

Saatchi F, Kirchmaier AL. 2019. Tolerance of DNA replication stress is promoted by fumarate through modulation of histone demethylation and enhancement of replicative intermediate processing in Saccharomyces cerevisiae. Genetics 212:631−54

doi: 10.1534/genetics.119.302238
[96]

Schvartzman JM, Forsyth G, Walch H, Chatila W, Taglialatela A, et al. 2023. Oncogenic IDH mutations increase heterochromatin-related replication stress without impacting homologous recombination. Molecular Cell 83:2347−2356.E8

doi: 10.1016/j.molcel.2023.05.026
[97]

Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, et al. 2014. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84−97

doi: 10.1016/j.cell.2014.04.046
[98]

Zheng L, Roeder RG, Luo Y. 2003. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255−66

doi: 10.1016/S0092-8674(03)00552-X
[99]

Dai RP, Yu FX, Goh SR, Chng HW, Tan YL, et al. 2008. Histone 2B (H2B) expression is confined to a proper NAD+/NADH redox status. Journal of Biological Chemistry 283:26894−901

doi: 10.1074/jbc.M804307200
[100]

Stein A, Firshein W. 2000. Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex. Journal of Bacteriology 182:2119−24

doi: 10.1128/JB.182.8.2119-2124.2000
[101]

Chen J, Zhang J, Zhu Y, Zhu Y, Pang J, et al. 2025. Focal adhesion kinase/Src family kinase axis-mediated tyrosine phosphorylation of metabolic enzymes facilitates tumor metastasis. Signal Transduction and Targeted Therapy 10:280

doi: 10.1038/s41392-025-02395-5
[102]

Soultanas P, Janniere L. 2023. The metabolic control of DNA replication: mechanism and function. Open Biology 13:230220

doi: 10.1098/rsob.230220
[103]

Laffan J, Firshein W. 1987. Membrane protein binding to the origin region of Bacillus subtilis. Journal of Bacteriology 169:4135−40

doi: 10.1128/jb.169.9.4135-4140.1987
[104]

Broxmeyer HE. 1979. Report on the 1978 annual meeting of the International Society of Experimental Hematology. Leukemia Research 3:109−16

doi: 10.1016/0145-2126(79)90008-0
[105]

Noirot-Gros MF, Dervyn E, Wu LJ, Mervelet P, Errington J, et al. 2002. An expanded view of bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America 99:8342−47

doi: 10.1073/pnas.122040799
[106]

Grosse F, Nasheuer HP, Scholtissek S, Schomburg U. 1986. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. European Journal of Biochemistry 160:459−67

doi: 10.1111/j.1432-1033.1986.tb10062.x
[107]

Popanda O, Fox G, Thielmann HW. 1998. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochimica et Biophysica Acta 1397:102−17

doi: 10.1016/S0167-4781(97)00229-7
[108]

Rhee SG. 2016. Overview on peroxiredoxin. Molecules and Cells 39:1−5

doi: 10.14348/molcells.2016.2368
[109]

Nyström T, Yang J, Molin M. 2012. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes & Development 26:2001−8

doi: 10.1101/gad.200006.112
[110]

Wang A, Zou Y, Liu S, Zhang X, Li T, et al. 2024. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nature Protocols 19:1311−47

doi: 10.1038/s41596-023-00948-y
[111]

Zhao Y, Hu Q, Cheng F, Su N, Wang A, et al. 2015. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metabolism 21:777−89

doi: 10.1016/j.cmet.2015.04.009
[112]

Zhao Y, Wang A, Zou Y, Su N, Loscalzo J, et al. 2016. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nature Protocols 11:1345−59

doi: 10.1038/nprot.2016.074
[113]

Moretti FA, Giardino G, Attenborough TCH, Gkazi AS, Margetts BK, et al. 2021. Metabolite and thymocyte development defects in ADA-SCID mice receiving enzyme replacement therapy. Scientific Reports 11:23221

doi: 10.1038/s41598-021-02572-w
[114]

Lee N, Russell N, Ganeshaguru K, Jackson BFA, Piga A, et al. 1984. Mechanisms of deoxyadenosine toxicity in human lymphoid cells in vitro: relevance to the therapeutic use of inhibitors of adenosine deaminase. British Journal of Haematology 56:107−19

doi: 10.1111/j.1365-2141.1984.tb01276.x
[115]

Whitmore KV, Gaspar HB. 2016. Adenosine deaminase deficiency – more than just an immunodeficiency. Frontiers in Immunology 7:314

doi: 10.3389/fimmu.2016.00314
[116]

Munk SHN, Merchut-Maya JM, Adelantado Rubio A, Hall A, Pappas G, et al. 2023. NAD+ regulates nucleotide metabolism and genomic DNA replication. Nature Cell Biology 25:1774−86

doi: 10.1038/s41556-023-01280-z