[1]

Capela R, Garric J, Castro LFC, Santos MM. 2020. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: a review. Science of The Total Environment 705:135740

doi: 10.1016/j.scitotenv.2019.135740
[2]

Viaroli S, Lancia M, Re V. 2022. Microplastics contamination of groundwater: current evidence and future perspectives. A review. Science of The Total Environment 824:153851

doi: 10.1016/j.scitotenv.2022.153851
[3]

Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, et al. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Research 139:118−131

doi: 10.1016/j.watres.2018.03.042
[4]

Zhao DL, Zhou W, Shen L, Li B, Sun H, et al. 2024. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. Water Research 251:121111

doi: 10.1016/j.watres.2024.121111
[5]

Li W, Patton S, Gleason JM, Mezyk SP, Ishida KP, et al. 2018. UV photolysis of chloramine and persulfate for 1, 4-dioxane removal in reverse-osmosis permeate for potable water reuse. Environmental Science & Technology 52:6417−6425

doi: 10.1021/acs.est.7b06042
[6]

Ran M, Hu Y, Cao J, Jiang Y, Xing M. 2025. Piezo-photocatalytic-Fenton-like ternary coupling system for enhanced resourceful conversion of organic pollutants. Water Research 285:124122

doi: 10.1016/j.watres.2025.124122
[7]

Yuan C, Li G, Ran M, Yang W, Shu P, et al. 2025. Fe(III) alleviates pH dependence of iron-based bimetallic/PMS system for organic pollutant oxidation. Applied Catalysis B: Environment and Energy 366:125002

doi: 10.1016/j.apcatb.2024.125002
[8]

Li D, Zhang S, Li S, Tang J, Hua T, et al. 2023. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: a review. Journal of Cleaner Production 397:136468

doi: 10.1016/j.jclepro.2023.136468
[9]

Wang Z, Huang Y, He S, Li M, Gong J, et al. 2025. Oxygen-independent sulfate radical and Fe2+-modified implants for fast sterilization and osseointegration of infectious bone defects. ACS Nano 19:18804−18823

doi: 10.1021/acsnano.5c04147
[10]

Lee J, von Gunten U, Kim JH. 2020. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology 54:3064−3081

doi: 10.1021/acs.est.9b07082
[11]

Oh WD, Dong Z, Lim TT. 2016. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental 194:169−201

doi: 10.1016/j.apcatb.2016.04.003
[12]

Zhai C, Chen Y, Huang X, Isaev AB, Zhu M. 2022. Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. Environmental Functional Materials 1:219−229

doi: 10.1016/j.efmat.2022.11.001
[13]

Zhao Z, Yang G, Wang P, Yue S, Yang M, et al. 2025. Regulating nonradicals generation through peroxymonosulfate activation via localized dipole to enhance wastewater biodegradability. Nature Communications 16:5861

doi: 10.1038/s41467-025-60964-2
[14]

Furman OS, Teel AL, Watts RJ. 2010. Mechanism of base activation of persulfate. Environmental Science & Technology 44:6423−6428

doi: 10.1021/es1013714
[15]

Shu Z, Liu Q, Dai Z, Pan Z, Aeppli M, et al. 2025. Heterogeneous photochemical generation of hydroxyl radical in mineral-organics systems: dual roles of iron oxides. Environmental Science & Technology 59:13820−13831

doi: 10.1021/acs.est.5c04440
[16]

Wang Y, Zheng J, Zhou T, Zhang Q, Feng M, et al. 2025. Confinement-modulated singlet-oxygen nanoreactors for water decontamination. Environmental Science & Technology 59:6341−6351

doi: 10.1021/acs.est.5c00767
[17]

Zhao X, Zhang Z. 2025. Heterogeneous peroxymonosulfate-based advanced oxidation mechanisms: new wine in old bottles? Environmental Science & Technology 59:5913−5924

doi: 10.1021/acs.est.4c11311
[18]

Zhou X, Zhou Y, Zhao S, Fan S, He X, et al. 2025. Precise Mo-Fe dual-atom coordination regulates the selective generation of non-free radicals in peroxymoncosulfate activation. Advanced Functional Materials 00:e13232

doi: 10.1002/adfm.202513232
[19]

Li X, Wen X, Lang J, Wei Y, Miao J, et al. 2023. CoN1O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV)=O generation. Angewandte Chemie International Edition 62:e202303267

doi: 10.1002/anie.202303267
[20]

Shi Z, Li C, Liu W, Jiang Z, Chen H, et al. 2024. High-entropy effect breaking the oxo wall for selective high-valent metal–oxo species generation. ACS Catalysis 14:14796−14806

doi: 10.1021/acscatal.4c03327
[21]

Korpe S, Rao PV, Sonawane SH. 2023. Performance evaluation of hydrodynamic cavitation in combination with AOPs for degradation of tannery wastewater. Journal of Environmental Chemical Engineering 11:109731

doi: 10.1016/j.jece.2023.109731
[22]

Lee Y, von Gunten U. 2010. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research 44:555−566

doi: 10.1016/j.watres.2009.11.045
[23]

Zhang H, Xie C, Chen L, Duan J, Li F, et al. 2023. Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co (II)/peroxymonosulfate catalytic activation system. Water Research 229:119392

doi: 10.1016/j.watres.2022.119392
[24]

Chen C, Wu Z, Zheng S, Wang L, Niu X, et al. 2020. Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite. Environmental Science & Technology 54:8455−8463

doi: 10.1021/acs.est.0c02377
[25]

Gu CH, Wang S, Zhang AY, Liu C, Jiang J, et al. 2024. Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in situ utilization. Nature Communications 15:5771

doi: 10.1038/s41467-024-50240-0
[26]

Li X, Gao Y, Qi J, Liu Y, Li Q, et al. 2025. Asymmetric coordination modulating Co spin state for peroxymonosulfate activation to accelerate 1O2 generation. Advanced Functional Materials 35:2502680

doi: 10.1002/adfm.202502680
[27]

Yin C, Mo F, Li X, Li F, Xue W, et al. 2025. Local structural distortion in MoS2 triggers orbital energy level rearrangement of Fe sites to boost Fenton-like reactions. Applied Catalysis B: Environment and Energy 376:125470

doi: 10.1016/j.apcatb.2025.125470
[28]

Zhong H, Wang J, Zhang B, Liu Y, Gong Z, et al. 2025. Selective introduction of pentagon defects into Co-N4 sites for boosting Fenton-like activity. Advanced Functional Materials 35:2501208

doi: 10.1002/adfm.202501208
[29]

Zhang L, Cheng K, Yang Z, Zhang Y, Kubuki S, et al. 2025. Deciphering the origin of higher shell coordination on single iron catalysts for resilient modulating persulfate oxidation into singlet oxygen pathway. Advanced Functional Materials 35:2417441

doi: 10.1002/adfm.202417441
[30]

Pei J, Liu J, Fu K, Fu Y, Yin K, et al. 2025. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nature Communications 16:800

doi: 10.1038/s41467-025-56246-6
[31]

Hao LY, Tang ZJ, Cai CY, Zhao YC, Tian L, et al. 2025. Electron-delocalized Cu2+ activates spin channels in spinel oxides to selectively produce 1O2 for wastewater treatment. Angewandte Chemie International Edition 137:e202504426

doi: 10.1002/anie.202504426
[32]

Pan Y, Zhang X, Huang X, Li T, Wu T, et al. 2025. Optimized the eg occupancy of Co active site through 4f–2p–3d gradient orbital coupling for efficient Fenton-like catalysis. Applied Catalysis B: Environment and Energy 375:125420

doi: 10.1016/j.apcatb.2025.125420
[33]

Chen T, Zhang G, Sun H, Hua Y, Yang S, et al. 2025. Robust Fe-N4-C6O2 single atom sites for efficient pms activation and enhanced FeIV = O reactivity. Nature Communications 16:2402

doi: 10.1038/s41467-025-57643-7
[34]

Zou Y, Fu S, Xu Z, Zhou X, Li J, et al. 2025. Unveiling the long-range interaction of sulfur in the second shell of Fe-N4 single-atom sites for highly selective generation of high-valent iron-oxo species in peroxymonosulfate activation. Chemical Engineering Journal 505:159684

doi: 10.1016/j.cej.2025.159684
[35]

Yang T, Chen M, Li J, Feng Z, Zou S, et al. 2025. One heterogeneous catalyst drives two selective Fenton-like reaction modes for sustainable water decontamination. Environmental Science & Technology 59:8155−8166

doi: 10.1021/acs.est.4c13436
[36]

Zeng Y, Qin H, Wu F, Gao J, Li W, et al. 2025. Oxygen doping enables tailored built-in electric fields in FeOCl/g-C3N4 heterojunctions for enhanced peroxymonosulfate activation. Advanced Functional Materials 35:2423664

doi: 10.1002/adfm.202423664
[37]

Li YH, Chen CY, Gao S, Wang CC, Li Y, et al. 2025. Unveiling roles of nonradical electron-donation pathway in peroxymonosulfate activation for boosted interfacial radical generation. Angewandte Chemie International Edition 64:e202507772

doi: 10.1002/anie.202507772
[38]

Shi LJ, Wang ZH, Zhang YJ, Chen JJ, Li WW, et al. 2025. Anions-impacted water purification from a dual-substrate perspective. Environmental Science & Technology 59(24):12378−12386

doi: 10.1021/acs.est.5c03360
[39]

Ren S, Xu X, Ren W, Zhong S, Zhou H, et al. 2025. Defective multi-element coordinated single atom catalysts (Cu-N2SCl) for high-performance water decontamination. Water Research 286:124183

doi: 10.1016/j.watres.2025.124183
[40]

Ren W, Cheng C, Shao P, Luo X, Zhang H, et al. 2022. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science & Technology 56:78−97

doi: 10.1021/acs.est.1c05374
[41]

Wang Y, Li H, Zong Y, Zhou Z, Ye G, et al. 2025. Defect-engineered inert interfaces on iron-rich clay minerals boost exclusive electron transfer pathway in Fenton-like reactions. Advanced Functional Materials 00:e12238

doi: 10.1002/adfm.202512238
[42]

Chen C, Zhao Y, Zhang K, Li Y, Wu Q, et al. 2025. Fluorine-induced spin-state tuning in Co3O4 enhances nonradical peroxymonosulfate activation efficiency. Applied Catalysis B: Environment and Energy 378:125574

doi: 10.1016/j.apcatb.2025.125574
[43]

Zhang YJ, Huang GX, Winter LR, Chen JJ, Tian L, et al. 2022. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nature Communications 13:3005

doi: 10.1038/s41467-022-30560-9
[44]

Li JY, Liu ZQ, Cui YH, Yang SQ, Gu J, et al. 2023. Abatement of aromatic contaminants from wastewater by a heat/persulfate process based on a polymerization mechanism. Environmental Science & Technology 57:18575−18585

doi: 10.1021/acs.est.2c06137
[45]

Chen Y, Ren W, Ma T, Ren N, Wang S, et al. 2024. Transformative removal of aqueous micropollutants into polymeric products by advanced oxidation processes. Environmental Science & Technology 58:4844−4851

doi: 10.1021/acs.est.3c06376
[46]

Deng Y, Zhou Y, Song Z, Yang X. 2025. Long-range electronically polarized Fe-N5 catalysts redirect polymerization-driven phenolic pollutant removal toward sustainable carbon sequestration. Angewandte Chemie International Edition 64:e202509493

doi: 10.1002/anie.202509493
[47]

Yao Z, Chen Y, Wang X, Hu K, Ren S, et al. 2025. High-entropy alloys catalyzing polymeric transformation of water pollutants with remarkably improved electron utilization efficiency. Nature Communications 16:148

doi: 10.1038/s41467-024-55627-7
[48]

Cao J, Li J, Yang B, Chen Z, Mahjoub AR, et al. 2024. Gambling of homogeneous and heterogeneous Fenton in wastewater treatment. Cell Reports Physical Science 5:101966

doi: 10.1016/j.xcrp.2024.101966
[49]

Tong Y, Wang X, Zhang Y, Xu J, Sun C. 2025. Reactive species in peracetic acid-based AOPs: a critical review of their formation mechanisms, identification methods and oxidation performances. Water Research 272:122917

doi: 10.1016/j.watres.2024.122917
[50]

Wang Z, Chen Z, Li Q, Wang J, Cao L, et al. 2023. Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole. Environmental Science & Technology 57:10478−10488

doi: 10.1021/acs.est.3c03370
[51]

Chen Y, Li Q, Su R, Gao Y, An N, et al. 2025. Oxygen vacancies-mediated the peracetic acid activation to selectively generate 1O2 for water decontamination. Water Research 282:123765

doi: 10.1016/j.watres.2025.123765
[52]

Guo C, Li Y, Gu J, Yu C, Wan J, et al. 2025. Unraveling the co-catalytic mechanism in Fenton-like reaction with diatomic Fe/Mo catalysts: accelerating the Fe(II)/Fe(III) conversion and PAA efficient activation. Water Research 287:124473

doi: 10.1016/j.watres.2025.124473
[53]

Zhou C, Xing S, Ma J, Sui M. 2025. Synergistic piezoelectric-nanoscale zero-valent iron catalyst for peroxyacetic acid activation: a self-driven advanced oxidation process. Environmental Science & Technology 59:22285−22298

doi: 10.1021/acs.est.5c08828
[54]

Jin L, Di G, Shi D, Li Q, Li X, et al. 2025. Magnetic Fe/S-modified porous carbon activates peracetic acid for emerging contaminant removal: unveiling active sites and structure-activity relationships. Water Research 286:124291

doi: 10.1016/j.watres.2025.124291
[55]

Shen Y, Huang J, Qiao J, Chen J, Batjargal E, et al. 2025. Metal-based activation of periodate as an advanced oxidation process for water decontamination: a critical review. Chemical Engineering Journal 513:162949

doi: 10.1016/j.cej.2025.162949
[56]

Lu X, Li Y, Deng S, Li Y, Fu C, et al. 2025. Nitrilotriacetic acid-assisted activation of periodate by Fe(III) for organic pollutant degradation: the critical roles of high-valent iron species formation and coordination inhibition by phenolic contaminants. Chemical Engineering Journal 522:166990

doi: 10.1016/j.cej.2025.166990
[57]

Shi J, Cheng Y, Wang T, Peng Y, Lin X, et al. 2025. Site-specific spin state modulation in spinel oxides for enhanced nonradical oxidation. Angewandte Chemie International Edition 64:e202504189

doi: 10.1002/anie.202504189
[58]

Chen L, Hu J, Borthwick AGL, Sun W, Zhang H, et al. 2024. Solar-light-activated periodate for degradation and detoxification of highly toxic 6PPD-quinone at environmental levels. Nature Water 2:453−463

doi: 10.1038/s44221-024-00236-3