[1]

Intergovernmental Panel on Climate Change (IPCC). 2023. Summary for policymakers. In Climate Change 2023: Synthesis Report, eds. Core Writing Team, Lee H, Romero J. Geneva: IPCC. pp. 1–34 doi: 10.59327/IPCC/AR6-9789291691647.001

[2]

World Meteorological Organization (WMO). 2025. State of the global climate 2024. Geneva: WMO. 42 pp https://library.wmo.int/idurl/4/69455

[3]

Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, et al. 2019. The human imperative of stabilizing global climate change at 1.5 °C. Science 365(6459):eaaw6974

doi: 10.1126/science.aaw6974
[4]

Li C, Liu J, Du F, Zwiers FW, Feng G. 2025. Increasing certainty in projected local extreme precipitation change. Nature Communications 16(1):850

doi: 10.1038/s41467-025-56235-9
[5]

World Meteorological Organization (WMO). 2025. Greenhouse gas bulletin No. 21. WMO, Geneva. 10 pp https://library.wmo.int/idurl/4/69654

[6]

Thackeray CW, Hall A, Norris J, Chen D. 2022. Constraining the increased frequency of global precipitation extremes under warming. Nature Climate Change 12(5):441−448

doi: 10.1038/s41558-022-01329-1
[7]

Anderson WB, Seager R, Baethgen W, Cane M, You L. 2019. Synchronous crop failures and climate-forced production variability. Science Advances 5(7):eaaw1976

doi: 10.1126/sciadv.aaw1976
[8]

Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333(6042):616−620

doi: 10.1126/science.1204531
[9]

Fu J, Jian Y, Wang X, Li L, Ciais P, et al. 2023. Extreme rainfall reduces one-twelfth of China's rice yield over the last two decades. Nature Food 4(5):416−426

doi: 10.1038/s43016-023-00753-6
[10]

Food and Agriculture Organization (FAO). 2025. Global forest resources assessment 2025. FAO, Rome. 210 pp doi: 10.4060/cd6709en

[11]

Anderegg WRL, Wu C, Acil N, Carvalhais N, Pugh TAM, et al. 2022. A climate risk analysis of Earth's forests in the 21st century. Science 377(6610):1099−1103

doi: 10.1126/science.abp9723
[12]

Rodrigo-Comino J. 2019. Grasslands of the world: diversity, management and conservation. Systematics and Biodiversity 17(1):86−87

doi: 10.1080/14772000.2018.1549120
[13]

Bai Y, Cotrufo MF. 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377(6606):603−608

doi: 10.1126/science.abo2380
[14]

Borer ET, Grace JB, Harpole WS, MacDougall AS, Seabloom EW. 2017. A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology & Evolution 1(5):118

doi: 10.1038/s41559-017-0118
[15]

Radeloff VC, Mockrin MH, Helmers D, Carlson A, Hawbaker TJ, et al. 2023. Rising wildfire risk to houses in the United States, especially in grasslands and shrublands. Science 382(6671):702−707

doi: 10.1126/science.ade9223
[16]

Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, et al. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553(7687):194−198

doi: 10.1038/nature24668
[17]

Kou-Giesbrecht S. 2025. Nitrogen cycling in earth system models: from constraining carbon budgets to projecting pollution for planetary stewardship. Journal of Geophysical Research: Biogeosciences 130(10):e2025JG009209

doi: 10.1029/2025JG009209
[18]

Stevens CJ. 2019. Nitrogen in the environment. Science 363(6427):578−580

doi: 10.1126/science.aav8215
[19]

Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, et al. 2013. Our nutrient world: the challenge to produce more food and energy with less pollution. Report. Edinburgh: Centre for Ecology and Hydrology. 128 pp www.unep.org/resources/report/our-nutrient-world-challenge-produce-more-food-and-energy-less-pollution

[20]

Mosley OE, Gios E, Close M, Weaver L, Daughney C, et al. 2022. Nitrogen cycling and microbial cooperation in the terrestrial subsurface. The ISME Journal 16(11):2561−2573

doi: 10.1038/s41396-022-01300-0
[21]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16(5):263−276

doi: 10.1038/nrmicro.2018.9
[22]

Klimasmith IM, Kent AD. 2022. Micromanaging the nitrogen cycle in agroecosystems. Trends in Microbiology 30(11):1045−1055

doi: 10.1016/j.tim.2022.04.006
[23]

Malik A, Oita A, Shaw E, Li M, Ninpanit P, et al. 2022. Drivers of global nitrogen emissions. Environmental Research Letters 17(1):015006

doi: 10.1088/1748-9326/ac413c
[24]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293−296

doi: 10.1038/nature06592
[25]

Gong C, Tian H, Liao H, Pan N, Pan S, et al. 2024. Global net climate effects of anthropogenic reactive nitrogen. Nature 632(8025):557−563

doi: 10.1038/s41586-024-07714-4
[26]

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, et al. 2003. The nitrogen cascade. BioScience 53(4):341

doi: 10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2
[27]

Kanter DR. 2018. Nitrogen pollution: a key building block for addressing climate change. Climatic Change 147(1−2):11−21

doi: 10.1007/s10584-017-2126-6
[28]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621):20130164

doi: 10.1098/rstb.2013.0164
[29]

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7(3):737−750

doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
[30]

Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, et al. 2013. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368(1621):20130116

doi: 10.1098/rstb.2013.0116
[31]

Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5(1):3858

doi: 10.1038/ncomms4858
[32]

Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, et al. 2016. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change 6(9):836−843

doi: 10.1038/nclimate3088
[33]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889−892

doi: 10.1126/science.1136674
[34]

Cui J, Zhang X, Reis S, Wang C, Wang S, et al. 2023. Nitrogen cycles in global croplands altered by elevated CO2. Nature Sustainability 6(10):1166−1176

doi: 10.1038/s41893-023-01154-0
[35]

Cui J, Zheng M, Bian Z, Pan N, Tian H, et al. 2024. Elevated CO2 levels promote both carbon and nitrogen cycling in global forests. Nature Climate Change 14(5):511−517

doi: 10.1038/s41558-024-01973-9
[36]

Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165(2):351−372

doi: 10.1111/j.1469-8137.2004.01224.x
[37]

Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, et al. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60(10):2859−2876

doi: 10.1093/jxb/erp096
[38]

Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, et al. 2022. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. Plant Physiology 190(3):1609−1627

doi: 10.1093/plphys/kiac373
[39]

Long BM, Förster B, Pulsford SB, Price GD, Badger MR. 2021. Rubisco proton production can drive the elevation of CO2 within condensates and carboxysomes. Proceedings of the National Academy of Sciences of the United States of America 118(18):e2014406118

doi: 10.1073/pnas.2014406118
[40]

Fatichi S, Leuzinger S, Paschalis A, Langley JA, Donnellan Barraclough A, et al. 2016. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proceedings of the National Academy of Sciences of the United States of America 113(45):12757−12762

doi: 10.1073/pnas.1605036113
[41]

da Silva JR, Patterson AE, Rodrigues WP, Campostrini E, Griffin KL. 2017. Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environmental and Experimental Botany 134:82−95

doi: 10.1016/j.envexpbot.2016.11.007
[42]

Taub DR, Wang X. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology 50(11):1365−1374

doi: 10.1111/j.1744-7909.2008.00754.x
[43]

Wang W, Cai C, He J, Gu J, Zhu G, et al. 2020. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research 248:107605

doi: 10.1016/j.fcr.2019.107605
[44]

Mndela M, Tjelele JT, Madakadze IC, Mangwane M, Samuels IM, et al. 2022. A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecological Processes 11(1):52

doi: 10.1186/s13717-022-00397-7
[45]

Jayawardena DM, Heckathorn SA, Boldt JK. 2021. A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate. AoB Plants 13(4):plab031

doi: 10.1093/aobpla/plab031
[46]

Taub DR, Miller B, Allen H. 2008. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biology 14(3):565−575

doi: 10.1111/j.1365-2486.2007.01511.x
[47]

Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, et al. 2022. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376(6590):eabh3767

doi: 10.1126/science.abh3767
[48]

Reich PB, Hobbie SE. 2013. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change 3(3):278−282

doi: 10.1038/nclimate1694
[49]

Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, et al. 2017. Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology 23(9):3849−3856

doi: 10.1111/gcb.13721
[50]

Lam SK, Hao X, Lin E, Han X, Norton R, et al. 2012. Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China. Biology and Fertility of Soils 48(5):603−606

doi: 10.1007/s00374-011-0648-z
[51]

Wang B, Guo C, Wan Y, Li J, Ju X, et al. 2020. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Science of The Total Environment 706:136063

doi: 10.1016/j.scitotenv.2019.136063
[52]

Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353(6294):72−74

doi: 10.1126/science.aaf4610
[53]

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, et al. 2015. Managing nitrogen for sustainable development. Nature 528(7580):51−59

doi: 10.1038/nature15743
[54]

Sutton MA, Howard CM, Kanter DR, Lassaletta L, Móring A, et al. 2021. The nitrogen decade: mobilizing global action on nitrogen to 2030 and beyond. One Earth 4(1):10−14

doi: 10.1016/j.oneear.2020.12.016
[55]

Shyamsundar P, Springer NP, Tallis H, Polasky S, Jat ML, et al. 2019. Fields on fire: alternatives to crop residue burning in India. Science 365(6453):536−538

doi: 10.1126/science.aaw4085
[56]

Beach RH, Sulser TB, Crimmins A, Cenacchi N, Cole J, et al. 2019. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health 3(7):e307−e317

doi: 10.1016/S2542-5196(19)30094-4
[57]

Springmann M, Mason-D'Croz D, Robinson S, Garnett T, Godfray HCJ, et al. 2016. Global and regional health effects of future food production under climate change: a modelling study. The Lancet 387(10031):1937−1946

doi: 10.1016/S0140-6736(15)01156-3
[58]

Cui J, Gao Y, Van Grinsven H, Zheng M, Zhang X, et al. 2025. Adaptive mitigation of warming-induced food crisis and nitrogen pollution. Environmental Science & Technology 59(7):3527−3536

doi: 10.1021/acs.est.4c05531
[59]

Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, et al. 2013. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science 53(4):1335−1346

doi: 10.2135/cropsci2012.09.0545
[60]

Abebe A, Pathak H, Singh SD, Bhatia A, Harit RC, et al. 2016. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. Agriculture, Ecosystems & Environment 218:66−72

doi: 10.1016/j.agee.2015.11.014
[61]

Dang P, Ciais P, Peñuelas J, Lu C, Gao J, et al. 2025. Mitigating the detrimental effects of climate warming on major staple crop production through adaptive nitrogen management: a meta-analysis. Agricultural and Forest Meteorology 367:110524

doi: 10.1016/j.agrformet.2025.110524
[62]

Giménez VD, Serrago RA, Kettler B, García GA, Impa SM, et al. 2025. Nighttime warming affects yields of major grain crops: a global meta-analysis. Field Crops Research 334:110142

doi: 10.1016/j.fcr.2025.110142
[63]

Zheng M, Cui J, Cheng L, Wang X, Zhang X, et al. 2025. Warming promotes nitrogen and carbon cycles in global grassland. Environmental Science & Technology 59(5):2505−2518

doi: 10.1021/acs.est.4c04794
[64]

Cui J, Deng O, Zheng M, Zhang X, Bian Z, et al. 2024. Warming exacerbates global inequality in forest carbon and nitrogen cycles. Nature Communications 15(1):9185

doi: 10.1038/s41467-024-53518-5
[65]

Zhang Y, Piao S, Sun Y, Rogers BM, Li X, et al. 2022. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change 12(6):581−586

doi: 10.1038/s41558-022-01374-w
[66]

Huang M, Piao S, Ciais P, Peñuelas J, Wang X, et al. 2019. Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution 3(5):772−779

doi: 10.1038/s41559-019-0838-x
[67]

Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Bond WJ, et al. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328(5978):587−591

doi: 10.1126/science.1177216
[68]

Gowik U, Westhoff P. 2011. The path from C3 to C4 photosynthesis. Plant Physiology 155(1):56−63

doi: 10.1104/pp.110.165308
[69]

Chandiposha M. 2013. Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. African Journal of Agricultural Research 8(23):2814−2818

[70]

Robinson SI, O'Gorman EJ, Frey B, Hagner M, Mikola J. 2022. Soil organic matter, rather than temperature, determines the structure and functioning of subarctic decomposer communities. Global Change Biology 28(12):3929−3943

doi: 10.1111/gcb.16158
[71]

García-Palacios P, Crowther TW, Dacal M, Hartley IP, Reinsch S, et al. 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment 2(7):507−517

doi: 10.1038/s43017-021-00178-4
[72]

Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165−173

doi: 10.1038/nature04514
[73]

Davies-Barnard T, Zaehle S, Friedlingstein P. 2022. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19(14):3491−3503

doi: 10.5194/bg-19-3491-2022
[74]

Chang J, Viovy N, Vuichard N, Ciais P, Campioli M, et al. 2015. Modeled changes in potential grassland productivity and in grass-fed ruminant livestock density in Europe over 1961–2010. PLoS One 10(5):e0127554

doi: 10.1371/journal.pone.0127554
[75]

Turk J. 2016. Meeting projected food demands by 2050: understanding and enhancing the role of grazing ruminants. Journal of Animal Science 94:53−62

doi: 10.2527/jas.2016-0547
[76]

Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, et al. 2024. Climate change exacerbates the environmental impacts of agriculture. Science 385(6713):eadn3747

doi: 10.1126/science.adn3747
[77]

Yuan X, Li S, Chen J, Yu H, Yang T, et al. 2024. Impacts of global climate change on agricultural production: a comprehensive review. Agronomy 14(7):1360

doi: 10.3390/agronomy14071360
[78]

Chaturvedi A, Pandey B, Yadav AK, Saroj S. 2021. An overview of the potential impacts of global climate change on water resources. In Water Conservation in the Era of Global Climate Change, eds Thokchom B, Qiu P, Singh P, Iyer PK. Amsterdam: Elsevier. pp. 99–120 doi: 10.1016/B978-0-12-820200-5.00012-9

[79]

Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875−5895

doi: 10.3390/su7055875
[80]

Qu Q, Xu H, Ai Z, Wang M, Wang G, et al. 2023. Impacts of extreme weather events on terrestrial carbon and nitrogen cycling: a global meta-analysis. Environmental Pollution 319:120996

doi: 10.1016/j.envpol.2022.120996
[81]

García-García A, Cuesta-Valero FJ, Miralles DG, Mahecha MD, Quaas J, et al. 2023. Soil heat extremes can outpace air temperature extremes. Nature Climate Change 13(11):1237−1241

doi: 10.1038/s41558-023-01812-3
[82]

Xia Y, Fu C, Liao A, Wu H, Wu H, et al. 2024. Effects of extreme weather events on nitrous oxide emissions from rice-wheat rotation croplands. Plants 13(1):25

doi: 10.3390/plants13010025
[83]

Grossiord C. 2020. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytologist 228(1):42−49

doi: 10.1111/nph.15667
[84]

D'Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, et al. 2018. Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications 9(1):3213

doi: 10.1038/s41467-018-05705-4
[85]

Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, et al. 2016. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants 2(9):16132

doi: 10.1038/nplants.2016.132
[86]

Hufkens K, Keenan TF, Flanagan LB, Scott RL, Bernacchi CJ, et al. 2016. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change 6(7):710−714

doi: 10.1038/nclimate2942
[87]

Maurel C, Nacry P. 2020. Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants 6(7):744−749

doi: 10.1038/s41477-020-0684-5
[88]

Franks PJ, W Doheny-Adams, T, Britton-Harper ZJ, Gray JE. 2015. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist 207(1):188−195

doi: 10.1111/nph.13347
[89]

Zha X, Niu B, Li M, Duan C. 2022. Increasing impact of precipitation on alpine-grassland productivity over last two decades on the Tibetan Plateau. Remote Sensing 14(14):3430

doi: 10.3390/rs14143430
[90]

Wang B, Chen Y, Li Y, Zhang H, Yue K, et al. 2021. Differential effects of altered precipitation regimes on soil carbon cycles in arid versus humid terrestrial ecosystems. Global Change Biology 27(24):6348−6362

doi: 10.1111/gcb.15875
[91]

Zheng M, Cui J, Wang X, Zhang X, Xie Z, et al. 2025. Shifts in precipitation regimes exacerbate global inequality in grassland nitrogen cycles. Nature Communications 16(1):7888

doi: 10.1038/s41467-025-63206-7
[92]

Bellaloui N, Mengistu A. 2015. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities. The Scientific World Journal 2015(1):407872

doi: 10.1155/2015/407872
[93]

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, et al. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1473

doi: 10.3389/fpls.2018.01473
[94]

Pritchard SG. 2011. Soil organisms and global climate change. Plant Pathology 60(1):82−99

doi: 10.1111/j.1365-3059.2010.02405.x
[95]

Nihorimbere V, Ongena M, Smargiassi M, Thonart P. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy and Society and Environment 15(2):327−337

[96]

Suolang Y, Luo W, Ma J, Zan Y, Yu Y, et al. 2024. Extreme precipitation alters soil nitrogen cycling related microbial community in karst abandoned farmland. Applied Soil Ecology 197:105345

doi: 10.1016/j.apsoil.2024.105345
[97]

Liu X, Bai Q, Liang K, Pei M, Chen J, et al. 2025. Altered precipitation affects soil enzyme activity related to nitrogen and phosphorous but not carbon cycling: a meta-analysis. Journal of Environmental Management 377:124709

doi: 10.1016/j.jenvman.2025.124709
[98]

Zhang J, Ru J, Song J, Li H, Li X, et al. 2022. Increased precipitation and nitrogen addition accelerate the temporal increase in soil respiration during 8-year old-field grassland succession. Global Change Biology 28(12):3944−3959

doi: 10.1111/gcb.16159
[99]

Ji Y, Ma N, Heděnec P, Peng Y, Yue K, et al. 2025. Impact of seasonal precipitation regimes on soil nitrogen transformation in a subtropical forest: insights from a manipulation experiment. Plant and Soil 513(2):2225−2239

doi: 10.1007/s11104-025-07311-y
[100]

Liu L, Zhang X, Xu W, Liu X, Li Y, et al. 2020. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution 265:114862

doi: 10.1016/j.envpol.2020.114862
[101]

Wu Q, Yue K, Ma Y, Heděnec P, Cai Y, et al. 2022. Contrasting effects of altered precipitation regimes on soil nitrogen cycling at the global scale. Global Change Biology 28(22):6679−6695

doi: 10.1111/gcb.16392
[102]

Fan Z, Lin S, Zhang X, Jiang Z, Yang K, et al. 2014. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agricultural Water Management 144:11−19

doi: 10.1016/j.agwat.2014.05.010
[103]

Karrou M, Nachit M. 2015. Durum wheat genotypic variation of yield and nitrogen use efficiency and its components under different water and nitrogen regimes in the Mediterranean region. Journal of Plant Nutrition 38(14):2259−2278

doi: 10.1080/01904167.2015.1022184
[104]

Deng L, Peng C, Kim DG, Li J, Liu Y, et al. 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews 214:103501

doi: 10.1016/j.earscirev.2020.103501
[105]

Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Blasco B, Constán-Aguilar C, Romero L, et al. 2011. Variation in the use efficiency of N under moderate water deficit in tomato plants (Solanum lycopersicum) differing in their tolerance to drought. Acta Physiologiae Plantarum 33(5):1861−1865

doi: 10.1007/s11738-011-0729-5
[106]

Hoang DT, Hiroo T, Yoshinobu K. 2019. Nitrogen use efficiency and drought tolerant ability of various sugarcane varieties under drought stress at early growth stage. Plant Production Science 22(2):250−261

doi: 10.1080/1343943X.2018.1540277
[107]

Hammerl V, Kastl EM, Schloter M, Kublik S, Schmidt H, et al. 2019. Influence of rewetting on microbial communities involved in nitrification and denitrification in a grassland soil after a prolonged drought period. Scientific Reports 9(1):2280

doi: 10.1038/s41598-018-38147-5
[108]

Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK. 2017. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. Journal of Geophysical Research: Biogeosciences 122(12):3260−3272

doi: 10.1002/2017JG004146
[109]

Saleem A, Anwar S, Nawaz T, Fahad S, Saud S, et al. 2025. Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences 11(3):595−611

doi: 10.1007/s43994-024-00177-3
[110]

Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, et al. 2014. Climate-smart agriculture for food security. Nature Climate Change 4(12):1068−1072

doi: 10.1038/nclimate2437
[111]

Raij-Hoffman I, Dahan O, Dahlke HE, Harter T, Kisekka I. 2024. Assessing nitrate leaching during drought and extreme precipitation: Exploring deep vadose-zone monitoring, groundwater observations, and field mass balance. Water Resources Research 60(11):e2024WR037973

doi: 10.1029/2024WR037973
[112]

Wang W, Qiang M, Zuo J, Wang K, Han J, et al. 2025. Effects of extreme moisture events on greenhouse gas emissions and soil ecological functional stability in calcaric cambisols. Agronomy 15(11):2461

doi: 10.3390/agronomy15112461
[113]

Suprayitno D, Iskandar S, Dahurandi K, Hendarto T, Rumambi J. 2024. Public policy in the era of climate change: adapting strategies for sustainable futures. Migration Letters 21(S6):945−958

[114]

Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, et al. 2015. Systems integration for global sustainability. Science 347(6225):1258832

doi: 10.1126/science.1258832
[115]

Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB. 2003. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the United States of America 100(13):7650−7654

doi: 10.1073/pnas.0932734100
[116]

Wu H, Su X, Singh VP. 2023. Increasing risks of future compound climate extremes with warming over global land masses. Earth's Future 11(9):e2022EF003466

doi: 10.1029/2022EF003466
[117]

Ren C, Zhang X, Reis S, Wang S, Jin J, et al. 2023. Climate change unequally affects nitrogen use and losses in global croplands. Nature Food 4(4):294−304

doi: 10.1038/s43016-023-00730-z
[118]

Xu P, Li G, Zheng Y, Fung JCH, Chen A, et al. 2024. Fertilizer management for global ammonia emission reduction. Nature 626(8000):792−798

doi: 10.1038/s41586-024-07020-z
[119]

Cuni-Sanchez A, Aneseyee AB, Baderha GKR, Batumike R, Bitariho R, et al. 2025. Perceived climate change impacts and adaptation responses in ten African mountain regions. Nature Climate Change 15(2):153−161

doi: 10.1038/s41558-024-02221-w
[120]

Tessema I, Simane B. 2019. Vulnerability analysis of smallholder farmers to climate variability and change: an agro-ecological system-based approach in the Fincha'a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecological Processes 8(1):5

doi: 10.1186/s13717-019-0159-7
[121]

Sullivan MJP, Thomsen MA, Suttle KB. 2016. Grassland responses to increased rainfall depend on the timescale of forcing. Global Change Biology 22(4):1655−1665

doi: 10.1111/gcb.13206
[122]

Sasaki T, Collins SL, Rudgers JA, Batdelger G, Baasandai E, et al. 2023. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proceedings of the National Academy of Sciences of the United States of America 120(35):e2305050120

doi: 10.1073/pnas.2305050120
[123]

Williamson J, Lu M, Camus MF, Gregory RD, MacLean IMD, et al. 2025. Clustered warming tolerances and the nonlinear risks of biodiversity loss on a warming planet. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 380(1917):20230321

doi: 10.1098/rstb.2023.0321
[124]

Stanimirova R, Arévalo P, Kaufmann RK, Maus V, Lesiv M, et al. 2019. Sensitivity of global pasturelands to climate variation. Earth's Future 7(12):1353−1366

doi: 10.1029/2019EF001316
[125]

Wang C, Vera-Vélez R, Lamb EG, Wu J, Ren F. 2022. Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. Science of The Total Environment 806:151224

doi: 10.1016/j.scitotenv.2021.151224
[126]

Taylor SH, Ripley BS, Martin T, De-Wet LA, Woodward FI, et al. 2014. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Global Change Biology 20(6):1992−2003

doi: 10.1111/gcb.12498
[127]

Guo L, Xiong S, Mills BJW, Isson T, Yang S, et al. 2024. Acceleration of phosphorus weathering under warm climates. Science Advances 10(28):eadm7773

doi: 10.1126/sciadv.adm7773
[128]

Kong X, Determann M, Andersen TK, Barbosa CC, Dadi T, et al. 2023. Synergistic effects of warming and internal nutrient loading interfere with the long-term stability of lake restoration and induce sudden re-eutrophication. Environmental Science & Technology 57(9):4003−4013

doi: 10.1021/acs.est.2c07181
[129]

Ben Keane J, Hartley IP, Taylor CR, Leake JR, Hoosbeek MR, et al. 2023. Grassland responses to elevated CO2 determined by plant–microbe competition for phosphorus. Nature Geoscience 16(8):704−709

doi: 10.1038/s41561-023-01225-z
[130]

Oswald R, Behrendt T, Ermel M, Wu D, Su H, et al. 2013. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341(6151):1233−1235

doi: 10.1126/science.1242266
[131]

Wang Y, Li Q, Wang Y, Ren C, Saiz-Lopez A, et al. 2025. Increasing soil nitrous acid emissions driven by climate and fertilization change aggravate global ozone pollution. Nature Communications 16(1):2463

doi: 10.1038/s41467-025-57161-6
[132]

Sutton MA, Mason KE, Bleeker A, Hicks WK, Masso C, et al. 2020. Just enough nitrogen: perspectives on how to get there for regions with too much and too little nitrogen. Switzerland: Springer Cham. 608 pp doi: 10.1007/978-3-030-58065-0

[133]

Vogt-Schilb A, Hallegatte S. 2017. Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy. WIREs Energy and Environment 6(6):e256

doi: 10.1002/wene.256
[134]

Debebe Y, Otterpohl R, Birhane E. 2025. Integrating rainwater harvesting and organic soil amendment to enhance crop yield and soil nutrients in agroforestry. Environment Development Sustainability 2025:1−19

doi: 10.1007/s10668-024-05764-2
[135]

Batterman SA, Hedin LO, Van Breugel M, Ransijn J, Craven DJ, et al. 2013. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502(7470):224−227

doi: 10.1038/nature12525
[136]

Chen H, Ju P, Zhu Q, Xu X, Wu N, et al. 2022. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment 3(10):701−716

doi: 10.1038/s43017-022-00344-2
[137]

Zhu G, Shi H, Zhong L, He G, Wang B, et al. 2025. Nitrous oxide sources, mechanisms and mitigation. Nature Reviews Earth & Environment 6(9):574−592

doi: 10.1038/s43017-025-00707-5
[138]

Ding B, Xu D, Wang S, Liu W, Zhang Q. 2025. Additive effects of multiple global change drivers on terrestrial nitrogen cycling worldwide. Global Change Biology 31(4):e70176

doi: 10.1111/gcb.70176