[1]

Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, et al. 2022. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. Environmental Chemistry Letters 20:2629−2664

doi: 10.1007/s10311-022-01439-4
[2]

Liu Z, He M, Tang L, Shao B, Liang Q, et al. 2023. Dual redox cycles of Mn(II)/Mn(III) and Mn(III)/Mn(IV) on porous Mn/N Co-doped biochar surfaces for promoting peroxymonosulfate activation and ciprofloxacin degradation. Journal of Colloid and Interface Science 634:255−267

doi: 10.1016/j.jcis.2022.12.008
[3]

Zhang JB, Dai C, Wang Z, You X, Duan Y, et al. 2023. Resource utilization of rice straw to prepare biochar as peroxymonosulfate activator for naphthalene removal: performances, mechanisms, environmental impact and applicability in groundwater. Water Research 244:120555

doi: 10.1016/j.watres.2023.120555
[4]

Wang X, Lyu H, Hu Z, Shen B. 2024. Application of molecular imprinting for targeted removal of organic contaminants and resistance genes from water: a review. Journal of Environmental Chemical Engineering 12(2):112068

doi: 10.1016/j.jece.2024.112068
[5]

Jiao Y, Li D, Wang M, Gong T, Sun M, et al. 2021. A scientometric review of biochar preparation research from 2006 to 2019. Biochar 3:283−298

doi: 10.1007/s42773-021-00091-5
[6]

Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, et al. 2022. Biochar-based composites for remediation of polluted wastewater and soil environments: challenges and prospects. Chemosphere 297:134163

doi: 10.1016/j.chemosphere.2022.134163
[7]

Liang L, Xi F, Tan W, Meng X, Hu B, et al. 2021. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255−281

doi: 10.1007/s42773-021-00101-6
[8]

Li X, Yang B, Xiao K, Duan H, Wan J, et al. 2021. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Research 203:117541

doi: 10.1016/j.watres.2021.117541
[9]

Luna Quinto M, Khan S, Picasso G, Del Pilar Taboada Sotomayor M. 2020. Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples. Journal of Hazardous Materials 384:121374

doi: 10.1016/j.jhazmat.2019.121374
[10]

Reville EK, Sylvester EH, Benware SJ, Negi SS, Berda EB. 2022. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polymer Chemistry 13(23):3387−3411

doi: 10.1039/D1PY01472B
[11]

Kwon G, Cho DW, Jang H, Shiung Lam S, Song H. 2022. Synergistic effects of blending seafood wastes as co-pyrolysis feedstock on syngas production and biochar properties. Chemical Engineering Journal 429:132487

doi: 10.1016/j.cej.2021.132487
[12]

Kwon G, Cho DW, Tsang DCW, Kwon EE, Song H. 2018. One step fabrication of carbon supported cobalt pentlandite (Co9S8) via the thermolysis of lignin and Co3O4. Journal of CO2 Utilization 27:196−203

doi: 10.1016/j.jcou.2018.07.016
[13]

Zhai Y, Dai Y, Guo J, Zhou L, Chen M, et al. 2020. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol A under visible-light irradiation. Journal of Colloid and Interface Science 560:111−121

doi: 10.1016/j.jcis.2019.08.065
[14]

Ye S, Yan M, Tan X, Liang J, Zeng G, et al. 2019. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Applied Catalysis B: Environmental 250:78−88

doi: 10.1016/j.apcatb.2019.03.004
[15]

Zhou T, Ding L, Che G, Jiang W, Sang L. 2019. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment. TrAC Trends in Analytical Chemistry 114:11−28

doi: 10.1016/j.trac.2019.02.028
[16]

Arabi M, Ostovan A, Li J, Wang X, Zhang Z, et al. 2021. Molecular imprinting: green perspectives and strategies. Advanced Materials 33(30):e2100543

doi: 10.1002/adma.202100543
[17]

Sobiech M, Luliński P. 2024. Molecularly imprinted solid phase extraction–recent strategies, future prospects and forthcoming challenges in complex sample pretreatment process. TrAC Trends in Analytical Chemistry 174:117695

doi: 10.1016/j.trac.2024.117695
[18]

Liu M, Qu S, Mou H, Wei M, Hu X, et al. 2024. Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode. Bioresource Technology 413:131548

doi: 10.1016/j.biortech.2024.131548
[19]

Li Y, Luo L, Kong Y, Li Y, Wang Q, et al. 2024. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosensors and Bioelectronics 249:116018

doi: 10.1016/j.bios.2024.116018
[20]

Mao D. 2024. Construction and performance study of functionalized nano-biochar-based molecularly imprinted electrochemical sensors. Thesis. Jilin University, China doi: 10.27162/d.cnki.gjlin.2024.000750

[21]

Chen S, Zhu Y, Han J, Zhang T, Chou R, et al. 2023. Construction of a molecularly imprinted sensor modified with tea branch biochar and its rapid detection of norfloxacin residues in animal-derived foods. Foods 12(3):544

doi: 10.3390/foods12030544
[22]

Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A. 2017. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Analytica Chimica Acta 974:1−26

doi: 10.1016/j.aca.2017.04.042
[23]

Zhao Q, Zhang H, Zhao H, Liu J, Liu J, et al. 2020. Strategy of fusion covalent organic frameworks and molecularly imprinted polymers: a surprising effect in recognition and loading of cyanidin-3-O-glucoside. ACS Applied Materials & Interfaces 12(7):8751−8760

doi: 10.1021/acsami.9b21460
[24]

Wang S, Ye J, Bie Z, Liu Z. 2014. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chemical Science 5(3):1135−1140

doi: 10.1039/C3SC52986J
[25]

Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, et al. 2006. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 19(2):106−180

doi: 10.1002/jmr.760
[26]

Andersson L, Sellergren B, Mosbach K. 1984. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters 25:5211−5214

doi: 10.1016/S0040-4039(01)81566-5
[27]

Chen L, Xu S, Li J. 2011. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews 40:2922−2942

doi: 10.1039/c0cs00084a
[28]

Dong C, Shi H, Han Y, Yang Y, Wang R, et al. 2021. Molecularly imprinted polymers by the surface imprinting technique. European Polymer Journal 145:110231

doi: 10.1016/j.eurpolymj.2020.110231
[29]

Wright KM, Bowyer MC, McCluskey A, Holdsworth CI. 2023. Molecular imprinting of benzylpiperazine: a comparison of the self-assembly and semi-covalent approaches. International Journal of Molecular Sciences 24:5117

doi: 10.3390/ijms24065117
[30]

Zhang H. 2014. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55:699−714

doi: 10.1016/j.polymer.2013.12.064
[31]

Hu Y, Pan J, Zhang K, Lian H, Li G. 2013. Novel applications of molecularly-imprinted polymers in sample preparation. TrAC Trends in Analytical Chemistry 43:37−52

doi: 10.1016/j.trac.2012.08.014
[32]

Mustafai FA, Balouch A, Abdullah, Jalbani N, Bhanger MI, et al. 2018. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying Taguchi statistical method. European Polymer Journal 109:133−142

doi: 10.1016/j.eurpolymj.2018.09.041
[33]

Liu J, Cai X, Liu J, Liang D, Chen K, et al. 2022. Study on the preparation of estrone molecularly imprinted polymers and their application in a quartz crystal microbalance sensor via a computer-assisted design. International Journal of Molecular Sciences 23:5758

doi: 10.3390/ijms23105758
[34]

Fang L, Jia M, Zhao H, Kang L, Shi L, et al. 2021. Molecularly imprinted polymer-based optical sensors for pesticides in foods: recent advances and future trends. Trends in Food Science & Technology 116:387−404

doi: 10.1016/j.jpgs.2021.07.039
[35]

Han Y, Tao J, Ali N, Khan A, Malik S, et al. 2022. Molecularly imprinted polymers as the epitome of excellence in multiple fields. European Polymer Journal 179:111582

doi: 10.1016/j.eurpolymj.2022.111582
[36]

Yang B, Dai J, Fang X, Wu J, Li T, et al. 2024. Fe3O4/biochar modified with molecularly imprinted polymer as efficient persulfate activator for salicylic acid removal from wastewater: performance and specific recognition mechanism. Chemosphere 355:141680

doi: 10.1016/j.chemosphere.2024.141680
[37]

Jiao Y, Yi Y, Fang Z, Eric Tsang P. 2024. Selective removal of oxytetracycline by molecularly imprinted magnetic biochar. Bioresource Technology 395:130394

doi: 10.1016/j.biortech.2024.130394
[38]

You X, Dai C, Wang Z, Duan Y, Zhang JB, et al. 2023. Targeted degradation of naphthalene by peroxymonosulfate activation using molecularly imprinted biochar. Chemosphere 345:140491

doi: 10.1016/j.chemosphere.2023.140491
[39]

Chen X, Tian W. 2025. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. Journal of Chromatography A 1741:465611

doi: 10.1016/j.chroma.2024.465611
[40]

Han J. 2024. Preparation and application of molecularly imprinted polymers based on metanaphthene-carbon-based biochar in grain pretreatment. Thesis. Sichuan Agricultural University, China doi: 10.27345/d.cnki.gsnyu.2023.001984

[41]

Cheng J, Li Y, Zhong J, Lu Z, Wang G, et al. 2020. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chemical Engineering Journal 398:125664

doi: 10.1016/j.cej.2020.125664
[42]

Chen S, Han J, Zhu Y, Zhang X, Zheng C, et al. 2023. Preparation of biochar-based surface molecularly imprinted polymers and evaluation of their selective adsorption and removal of carbaryl from rice and corn. Journal of Chromatography A 1705:464210

doi: 10.1016/j.chroma.2023.464210
[43]

Zhao T, Chen R, Wang J. 2020. A mild method for preparation of highly selective magnetic biochar microspheres. International Journal of Molecular Sciences 21:3752

doi: 10.3390/ijms21113752
[44]

He J, Ma Z, Yang Y, Hemar Y, Zhao T. 2020. Extraction of tetracycline in food samples using biochar microspheres prepared by a Pickering emulsion method. Food Chemistry 329:127162

doi: 10.1016/j.foodchem.2020.127162
[45]

Zhou Q, Guo M, Wu S, Fornara D, Sarkar B, et al. 2021. Electrochemical sensor based on corncob biochar layer supported chitosan-MIPs for determination of dibutyl phthalate (DBP). Journal of Electroanalytical Chemistry 897:115549

doi: 10.1016/j.jelechem.2021.115549
[46]

Sun L, Guan J, Xu Q, Yang X, Wang J, et al. 2018. Synthesis and applications of molecularly imprinted polymers modified TiO2 nanomaterials: a review. Polymers 10:1248

doi: 10.3390/polym10111248
[47]

Chevalier Y, Bolzinger MA. 2013. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439:23−34

doi: 10.1016/j.colsurfa.2013.02.054
[48]

Berton-Carabin CC, Schroën K. 2015. Pickering emulsions for food applications: background, trends, and challenges. Annual Review of Food Science and Technology 6:263−297

doi: 10.1146/annurev-food-081114-110822
[49]

Shen J. 2022. Construction and application of electrochemical sensing interface for endocrine disruptors. Thesis. Huazhong University of Science and Technology, Wuhan, China https://d.wanfangdata.com.cn/thesis/D02995524

[50]

Moreira Gonçalves L. 2021. Electropolymerized molecularly imprinted polymers: perceptions based on recent literature for soon-to-be world-class scientists. Current Opinion in Electrochemistry 25:100640

doi: 10.1016/j.coelec.2020.09.007
[51]

González J, Guinea F, Vozmediano MAH. 1999. Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Physical Review B 59:R2474−R2477

doi: 10.1103/physrevb.59.r2474
[52]

Chen B, Liu C, Shang L, Guo H, Qin J, et al. 2020. Electric-field enhancement of molecularly imprinted Sol–gel-coated Au nano-urchin sensors for vapor detection of plant biomarkers. Journal of Materials Chemistry C 8:262−269

doi: 10.1039/C9TC05522C
[53]

Moein MM, Javanbakht M, Karimi M, Akbari-adergani B, Abdel-Rehim M. 2015. A new strategy for surface modification of polysulfone membrane by in situ imprinted Sol–gel method for the selective separation and screening of l-Tyrosine as a lung cancer biomarker. Analyst 140:1939−1946

doi: 10.1039/C4AN01596G
[54]

Luo J, Gao Y, Tan K, Wei W, Liu X. 2016. Preparation of a magnetic molecularly imprinted graphene composite highly adsorbent for 4-nitrophenol in aqueous medium. ACS Sustainable Chemistry & Engineering 4:3316−3326

doi: 10.1021/acssuschemeng.6b00367
[55]

Güney S, Cebeci FÇ. 2015. Selective electrochemical sensor for theophylline based on an electrode modified with imprinted Sol–gel film immobilized on carbon nanoparticle layer. Sensors and Actuators B: Chemical 208:307−314

doi: 10.1016/j.snb.2014.10.056
[56]

Szot K, Jönsson-Niedziolka M, Rozniecka E, Marken F, Opallo M. 2013. Direct electrochemistry of adsorbed proteins and bioelectrocatalysis at film electrode prepared from oppositely charged carbon nanoparticles. Electrochimica Acta 89:132−138

doi: 10.1016/j.electacta.2012.10.168
[57]

Chen L, Wang X, Lu W, Wu X, Li J. 2016. Molecular imprinting: perspectives and applications. Chemical Society Reviews 45:2137−2211

doi: 10.1039/C6CS00061D
[58]

Zhang Y, Song D, Lanni LM, Shimizu KD. 2010. Importance of functional monomer dimerization in the molecular imprinting process. Macromolecules 43:6284−6294

doi: 10.1021/ma101013c
[59]

Chai J, Zheng J, Tong Y, Chai F, Tian M. 2023. Construction of the molecularly imprinted adsorbent based on shaddock peel biochar sphere for highly sensitive detection of ribavirin in food and water resources. Environmental Research 236:116756

doi: 10.1016/j.envres.2023.116756
[60]

Wu JY, Xiong CL, Peng XT. 2018. Advances in the preparation of boric acid affinity materials and their application in the analysis of cis-diols in biological samples. Journal of Wuhan University (Medical Edition) 39(1):168−172 (in Chinese)

doi: 10.14188/j.1671-8852.2018.8009
[61]

Chen Y, Tang K, Wang X, Zhou Q, Tang S, et al. 2023. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban. Sensors and Actuators B: Chemical 382:133543

doi: 10.1016/j.snb.2023.133543
[62]

Lv X, Gao P. 2020. A phenol phosphorescent microsensor of mesoporous molecularly imprinted polymers. RSC Advances 10:17906−17913

doi: 10.1039/D0RA02834G
[63]

Jia X, Liu J, Zhang Y, Jiang X, Zhang J, et al. 2023. D-tartaric acid doping improves the performance of whole-cell bacteria imprinted polymer for sensing Vibrio parahaemolyticus. Analytica Chimica Acta 1275:341567

doi: 10.1016/j.aca.2023.341567
[64]

Jyoti, Deepeka, Rana S, Singhal S. 2023. PEDOT wrapped biomimetic recognition system for selective determination of carcinogenic phenacetin content in drug samples. Electrochimica Acta 471:143332

doi: 10.1016/j.electacta.2023.143332
[65]

Luo Z, Tian M, Ahmad N, Xie Y, Xu C, et al. 2024. A surface multiple imprinting layers membrane with well-oriented recognition sites for selective separation of chlorogenic acid from Ficus carica L. Food Chemistry 433:137347

doi: 10.1016/j.foodchem.2023.137347
[66]

Hosseini F, Dashtian K, Golzani M, Ejraei Z, Zare-Dorabei R. 2024. Remote magnetically stimulated xanthan-biochar-Fe3O4-molecularly imprinted biopolymer hydrogel toward electrochemical enantioselection of L-tryptophan. Analytica Chimica Acta 1316:342837

doi: 10.1016/j.aca.2024.342837
[67]

Yan H, Row KH. 2006. Characteristic and synthetic approach of molecularly imprinted polymer. International Journal of Molecular Sciences 7:155−178

doi: 10.3390/i7050155
[68]

Li Z, Tian W, Chu M, Zou M, Zhao J. 2023. Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: mechanism, regeneration and targeted adsorption. Process Safety and Environmental Protection 171:238−249

doi: 10.1016/j.psep.2023.01.024
[69]

Hamdan S, Moore L, Lejeune J, Hasan F, Carlisle TK, et al. 2016. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS. Journal of Colloid and Interface Science 463:29−36

doi: 10.1016/j.jcis.2015.10.033
[70]

Ginzburg-Turgeman R, Mandler D. 2010. Nanometric thin polymeric films based on molecularly imprinted technology: towards electrochemical sensing applications. Physical Chemistry Chemical Physics 12:11041−11050

doi: 10.1039/B927478B
[71]

Larsen AT, Lai T, Polic V, Auclair K. 2012. Dual use of a chemical auxiliary: molecularly imprinted polymers for the selective recovery of products from biocatalytic reaction mixtures. Green Chemistry 14:2206

doi: 10.1039/c2gc35604j
[72]

Mijangos I, Navarro-Villoslada F, Guerreiro A, Piletska E, Chianella I, et al. 2006. Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosensors and Bioelectronics 22:381−387

doi: 10.1016/j.bios.2006.05.012
[73]

Ye L, Yoshimatsu K, Kolodziej D, Da Cruz Francisco J, Dey ES. 2006. Preparation of molecularly imprinted polymers in supercritical carbon dioxide. Journal of Applied Polymer Science 102:2863−2867

doi: 10.1002/app.24648
[74]

Tse Sum Bui B, Haupt K. 2011. Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone—application to molecularly imprinted sorbent assays. Journal of Molecular Recognition 24:1123−1129

doi: 10.1002/jmr.1162
[75]

Yao M, Luo G, Ran Y, Li C, Dong L. 2024. A sensitive enzyme-free electrochemical sensor based on ZnWO4/γ-Fe2O3 magnetic molecularly imprinted polymer for specific recognition and determination of Chloramphenicol. Microchemical Journal 201:110654

doi: 10.1016/j.microc.2024.110654
[76]

Viltres-Portales M, Alberto MDL, Ye L. 2021. Synthesis of molecularly imprinted polymers using an amidine-functionalized initiator for carboxylic acid recognition. Reactive and Functional Polymers 165:104969

doi: 10.1016/j.reactfunctpolym.2021.104969
[77]

Panagiotopoulou M, Beyazit S, Nestora S, Haupt K, Tse Sum Bui B. 2015. Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers. Polymer 66:43−51

doi: 10.1016/j.polymer.2015.04.012
[78]

Do Minh T, Song J, Deb A, Cha L, Srivastava V, et al. 2020. Biochar based catalysts for the abatement of emerging pollutants: a review. Chemical Engineering Journal 394:124856

doi: 10.1016/j.cej.2020.124856
[79]

Pan X, Gu Z, Chen W, Li Q. 2021. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review. Science of The Total Environment 754:142104

doi: 10.1016/j.scitotenv.2020.142104
[80]

Cui Y, Kang W, Qin L, Ma J, Liu X, et al. 2020. Magnetic surface molecularly imprinted polymer for selective adsorption of quinoline from coking wastewater. Chemical Engineering Journal 397:125480

doi: 10.1016/j.cej.2020.125480
[81]

Tan F, Sun D, Gao J, Zhao Q, Wang X, et al. 2013. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials 244−245:750−757

doi: 10.1016/j.jhazmat.2012.11.003
[82]

'Arabi MI, Sells M. 2021. The translator of desires: poems. Vol. 150. Princeton, New Jersey: Princeton University Press. doi: 10.2307/j.ctv17nmzm0

[83]

Lyu H, Cheng Z, Wang X, Shen B, Tang J, et al. 2025. Target recognition and selective photocatalytic degradation of trace disinfection By-products by innovative molecular imprinting strategy. Journal of Hazardous Materials 490:137773

doi: 10.1016/j.jhazmat.2025.137773
[84]

Lu Z, Yu Z, Dong J, Song M, Liu Y, et al. 2018. Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline. Chemical Engineering Journal 337:228−241

doi: 10.1016/j.cej.2017.12.115
[85]

Li L, Zheng X, Chi Y, Wang Y, Sun X, et al. 2020. Molecularly imprinted carbon nanosheets supported TiO2: strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. Journal of Hazardous Materials 383:121211

doi: 10.1016/j.jhazmat.2019.121211
[86]

Sun L, Li J, Li X, Liu C, Wang H, et al. 2019. Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline. Journal of Colloid and Interface Science 552:271−286

doi: 10.1016/j.jcis.2019.05.060
[87]

Chi SW, Din ATM, Abdullah AZ. 2025. Critical review on magnetic separable molecularly imprinted photocatalyst: synthesis, reaction mechanism and outlook for practical applications. Materials Science in Semiconductor Processing 189:109292

doi: 10.1016/j.mssp.2025.109292
[88]

Cheung KH, Pabbruwe MB, Chen WF, Koshy P, Sorrell CC. 2021. Thermodynamic and microstructural analyses of photocatalytic TiO2 from the anodization of biomedical-grade Ti6Al4V in phosphoric acid or sulfuric acid. Ceramics International 47:1609−1624

doi: 10.1016/j.ceramint.2020.08.277
[89]

Guo F, Li M, Ren H, Huang X, Shu K, et al. 2019. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Separation and Purification Technology 228:115770

doi: 10.1016/j.seppur.2019.115770
[90]

Jiang C, Wang H, Wang Y, Ji H. 2020. All solid-state Z-scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution. Applied Catalysis B: Environmental 277:119235

doi: 10.1016/j.apcatb.2020.119235
[91]

Lu B, Li X, Wang T, Xie E, Xu Z. 2013. WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. Journal of Materials Chemistry A 1:3900−3906

doi: 10.1039/C3TA01444D
[92]

Phan DP, Lee EY. 2020. Phosphoric acid enhancement in a Pt-encapsulated Metal-Organic Framework (MOF) bifunctional catalyst for efficient hydro-deoxygenation of oleic acid from biomass. Journal of Catalysis 386:19−29

doi: 10.1016/j.jcat.2020.03.024
[93]

Wang CW, Liu K, Li B, Tan KS. 2022. Portfolio optimization under multivariate affine generalized hyperbolic distributions. International Review of Economics & Finance 80:49−66

doi: 10.1016/j.iref.2022.02.053
[94]

Zhu C, Wei X, Li W, Pu Y, Sun J, et al. 2020. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups. ACS Sustainable Chemistry & Engineering 8(38):14397−14406

doi: 10.1021/acssuschemeng.0c04205
[95]

Luo C, Zhao J, Li Y, Zhao W, Zeng Y, et al. 2018. Photocatalytic CO2 reduction over SrTiO3: correlation between surface structure and activity. Applied Surface Science 447:627−635

doi: 10.1016/j.apsusc.2018.04.049
[96]

Shen X, Zhu L, Liu G, Tang H, Liu S, et al. 2009. Photocatalytic removal of pentachlorophenol by means of an enzyme-like molecular imprinted photocatalyst and inhibition of the generation of highly toxic intermediates. New Journal of Chemistry 33:2278−2285

doi: 10.1039/B9NJ00255C
[97]

Zhao L, Zhao F, Zeng B. 2014. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosensors and Bioelectronics 60:71−76

doi: 10.1016/j.bios.2014.03.069
[98]

Song R, Hu X, Guan P, Li J, Du C, et al. 2016. Surface modification of imprinted polymer microspheres with ultrathin hydrophilic shells to improve selective recognition of glutathione in aqueous media. Materials Science and Engineering: C 60:1−6

doi: 10.1016/j.msec.2015.11.018
[99]

Haginaka J, Takehira H, Hosoya K, Tanaka N. 1999. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. Journal of Chromatography A 849:331−339

doi: 10.1016/S0021-9673(99)00570-1
[100]

Pan G, Ma Y, Zhang Y, Guo X, Li C, et al. 2011. Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization. Soft Matter 7:8428−8439

doi: 10.1039/C1SM05497J
[101]

Marchyk N, Maximilien J, Beyazit S, Haupt K, Bui BTS. 2014. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells. Nanoscale 6:2872−2878

doi: 10.1039/C3NR05295H
[102]

Ji W, Zhang M, Gao Q, Cui L, Chen L, et al. 2016. Preparation of hydrophilic molecularly imprinted polymers via bulk polymerization combined with hydrolysis of ester groups for selective recognition of iridoid glycosides. Analytical and Bioanalytical Chemistry 408:5319−5328

doi: 10.1007/s00216-016-9625-6
[103]

Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B. 2009. Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. Journal of Materials Chemistry 19:6185−6193

doi: 10.1039/B906117G
[104]

He J, Song L, Chen S, Li Y, Wei H, et al. 2015. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chemistry 187:331−337

doi: 10.1016/j.foodchem.2015.04.069
[105]

Puoci F, Iemma F, Cirillo G, Curcio M, Parisi OI, et al. 2009. New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. European Polymer Journal 45:1634−1640

doi: 10.1016/j.eurpolymj.2009.01.021
[106]

Du L, Ahmad S, Liu L, Wang L, Tang J. 2023. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Science of The Total Environment 858:159815

doi: 10.1016/j.scitotenv.2022.159815
[107]

Kurczewska J, Stachowiak M, Cegłowski M. 2024. Chitosan-based hydrogel beads with molecularly imprinted receptors on halloysite nanotubes for tetracycline separation in water and soil. Environmental Research 262:119924

doi: 10.1016/j.envres.2024.119924
[108]

Lin G, Wang Y, Wu X, Meng J, Ok YS, et al. 2025. Enhancing agricultural productivity with biochar: evaluating feedstock and quality standards. Bioresource Technology Reports 29:102059

doi: 10.1016/j.biteb.2025.102059
[109]

Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, et al. 2020. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends in Analytical Chemistry 128:115923

doi: 10.1016/j.trac.2020.115923
[110]

Mostafa AM, Barton SJ, Wren SP, Barker J. 2021. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC Trends in Analytical Chemistry 144:116431

doi: 10.1016/j.trac.2021.116431
[111]

Sellergren B. 1994. Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical Chemistry 66(9):1578−1582

doi: 10.1021/ac00081a036
[112]

Thibert V, Legeay P, Chapuis-Hugon F, Pichon V. 2012. Synthesis and characterization of molecularly imprinted polymers for the selective extraction of cocaine and its metabolite benzoylecgonine from hair extract before LC–MS analysis. Talanta 88:412−419

doi: 10.1016/j.talanta.2011.11.009[PubMed
[113]

Muhammad T, Liu C, Wang J, Piletska EV, Guerreiro AR, et al. 2012. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone. Analytica Chimica Acta 709:98−104

doi: 10.1016/j.aca.2011.10.009
[114]

Zheng C, Huang YP, Liu ZS. 2011. Recent developments and applications of molecularly imprinted monolithic column for HPLC and CEC. Journal of Separation Science 34:1988−2002

doi: 10.1002/jssc.201100164
[115]

Bjarnason B, Chimuka L, Ramström O. 1999. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Analytical Chemistry 71(11):2152−2156

doi: 10.1021/ac9810314
[116]

Núñez L, Turiel E, Martin-Esteban A, Tadeo JL. 2010. Molecularly imprinted polymer for the extraction of parabens from environmental solid samples prior to their determination by high performance liquid chromatography-ultraviolet detection. Talanta 80:1782−1788

doi: 10.1016/j.talanta.2009.10.023
[117]

Chapuis F, Mullot JU, Pichon V, Tuffal G, Hennion MC. 2006. Molecularly imprinted polymers for the clean-up of a basic drug from environmental and biological samples. Journal of Chromatography A 1135:127−134

doi: 10.1016/j.chroma.2006.09.076
[118]

Bratkowska D, Fontanals N, Borrull F, Cormack PAG, Sherrington DC, et al. 2010. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water. Journal of Chromatography A 1217:3238−3243

doi: 10.1016/j.chroma.2009.08.091
[119]

Ferrer I, Lanza F, Tolokan A, Horvath V, Sellergren B, et al. 2000. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Analytical Chemistry 72:3934−3941

doi: 10.1021/ac000015f[PubMed
[120]

Prieto A, Vallejo A, Zuloaga O, Paschke A, Sellergen B, et al. 2011. Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-port-derivatization gas chromatography–mass spectrometry. Analytica Chimica Acta 703:41−51

doi: 10.1016/j.aca.2011.07.007
[121]

Cacho C, Turiel E, Martín-Esteban A, Ayala D, Pérez-Conde C. 2006. Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. Journal of Chromatography A 1114:255−262

doi: 10.1016/j.chroma.2006.02.051
[122]

Ali WH, Derrien D, Alix F, Pérollier C, Lépine O, et al. 2010. Solid-phase extraction using molecularly imprinted polymers for selective extraction of a mycotoxin in cereals. Journal of Chromatography A 1217:6668−6673

doi: 10.1016/j.chroma.2010.04.071
[123]

Guzmán-Vázquez de Prada A, Martínez-Ruiz P, Reviejo AJ, Pingarrón JM. 2005. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Analytica Chimica Acta 539:125−132

doi: 10.1016/j.aca.2005.02.068
[124]

Keikavousi Behbahan A, Mahdavi V, Roustaei Z, Bagheri H. 2021. Preparation and evaluation of various banana-based biochars together with ultra-high performance liquid chromatography-tandem mass spectrometry for determination of diverse pesticides in fruiting vegetables. Food Chemistry 360:130085

doi: 10.1016/j.foodchem.2021.130085
[125]

Jiang HL, Li N, Cui L, Wang X, Zhao RS. 2019. Recent application of magnetic solid phase extraction for food safety analysis. TrAC Trends in Analytical Chemistry 120:115632

doi: 10.1016/j.trac.2019.115632
[126]

Vasconcelos I, Fernandes C. 2017. Magnetic solid phase extraction for determination of drugs in biological matrices. TrAC Trends in Analytical Chemistry 89:41−52

doi: 10.1016/j.trac.2016.11.011
[127]

Li N, Jiang HL, Wang X, Wang X, Xu G, et al. 2018. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends in Analytical Chemistry 102:60−74

doi: 10.1016/j.trac.2018.01.009
[128]

Deng ZH, Wang X, Wang XL, Gao CL, Dong L, et al. 2019. A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC. Microchimica Acta 186:108

doi: 10.1007/s00604-018-3198-3
[129]

Hu Y, Huang Z, Liao J, Li G. 2013. Chemical bonding approach for fabrication of hybrid magnetic metal–organic framework-5: high efficient adsorbents for magnetic enrichment of trace analytes. Analytical Chemistry 85(14):6885−6893

doi: 10.1021/ac4011364
[130]

Li D, Zou J, Cai PS, Xiong CM, Ruan JL. 2016. Preparation of magnetic ODS-PAN thin-films for microextraction of quetiapine and clozapine in plasma and urine samples followed by HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis 125:319−328

doi: 10.1016/j.jpba.2016.04.006
[131]

Moliner-Martínez Y, Prima-Garcia H, Ribera A, Coronado E, Campíns-Falcó P. 2012. Magnetic in-tube solid phase microextraction. Analytical Chemistry 84(16):7233−7240

doi: 10.1021/ac301660k
[132]

Huang XC, Chen H, Wei SL, Ma JK. 2024. A novel enrichment and sensitive method for rapid determination of 4 sulfonamide antibiotics residues in fish. LWT 199:116148

doi: 10.1016/j.lwt.2024.116148
[133]

Zhang BT, Zheng X, Li HF, Lin JM. 2013. Application of carbon-based nanomaterials in sample preparation: a review. Analytica Chimica Acta 784:1−17

doi: 10.1016/j.aca.2013.03.054
[134]

Wu Z, Xu N, Li W, Lin JM. 2019. A membrane separation technique for optimizing sample preparation of MALDI-TOF MS detection. Chinese Chemical Letters 30:95−98

doi: 10.1016/j.cclet.2018.01.048
[135]

Chen Y, Cao S, Zhang L, Xi C, Li X, et al. 2016. Preparation of size-controlled magnetite nanoparticles with a graphene and polymeric ionic liquid coating for the quick, easy, cheap, effective, rugged and safe extraction of preservatives from vegetables. Journal of Chromatography A 1448:9−19

doi: 10.1016/j.chroma.2016.04.045
[136]

Zhang Y, Shang J, Song Y, Rong C, Wang Y, et al. 2017. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique. Water Science and Technology 75:659−669

doi: 10.2166/wst.2016.525[PubMed
[137]

Che H, Wei G, Fan Z, Zhu Y, Zhang L, et al. 2023. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. Journal of Environmental Management 335:117566

doi: 10.1016/j.jenvman.2023.117566
[138]

Liu J, Guo W, Tao H, Asakura Y, Shuai Q, et al. 2023. Hierarchical magnetic nitrogen-doped porous carbon derived from a covalent organic framework (COF) for the highly efficient removal of sulfamerazine. Chemical Engineering Journal 471:144544

doi: 10.1016/j.cej.2023.144544
[139]

Wang S, Yuan C, Zafar FF, Wei M, Marrakchi F, et al. 2023. Facile synthesis of Chlorella-derived autogenous N-doped porous biochar for adsorption on tetracycline. Environmental Pollution 330:121717

doi: 10.1016/j.envpol.2023.121717
[140]

Wu X, Huang Q, Mao Y, Wang X, Wang Y, et al. 2019. Sensors for determination of uranium: a review. TrAC Trends in Analytical Chemistry 118:89−111

doi: 10.1016/j.trac.2019.04.026
[141]

Lahcen AA, Amine A. 2019. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis 31:188−201

doi: 10.1002/elan.201800623
[142]

Mahmoudpour M, Torbati M, Mousavi MM, de la Guardia M, Dolatabadi JEN. 2020. Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TrAC Trends in Analytical Chemistry 129:115943

doi: 10.1016/j.trac.2020.115943
[143]

Huang W, Zhou X, Luan Y, Cao Y, Wang N, et al. 2020. A sensitive electrochemical sensor modified with multi-walled carbon nanotubes doped molecularly imprinted silica nanospheres for detecting chlorpyrifos. Journal of Separation Science 43:954−961

doi: 10.1002/jssc.201901036
[144]

Rebelo P, Costa-Rama E, Seguro I, Pacheco JG, Nouws HPA, et al. 2021. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosensors and Bioelectronics 172:112719

doi: 10.1016/j.bios.2020.112719
[145]

Azzouz A, Goud KY, Raza N, Ballesteros E, Lee SE, et al. 2019. Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC Trends in Analytical Chemistry 110:15−34

doi: 10.1016/j.trac.2018.08.002
[146]

Aoulad El Hadj Ali Y, Hejji L, Ait Lahcen A, Pérez-Villarejo L, Azzouz A, et al. 2024. Progress and prospects in the green synthesis of molecularly imprinted polymers for sorptive extraction and sensing applications toward emerging contaminants in various sample matrices. TrAC Trends in Analytical Chemistry 170:117466

doi: 10.1016/j.trac.2023.117466
[147]

Huang P, Xiong Y, Ge Y, Wen Y, Zeng X, et al. 2023. Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Microchimica Acta 190:94

doi: 10.1007/s00604-023-05672-8
[148]

Cancelliere R, Cianciaruso M, Carbone K, Micheli L. 2022. Biochar: a sustainable alternative in the development of electrochemical printed platforms. Chemosensors 10:344

doi: 10.3390/chemosensors10080344
[149]

He L, Yang Y, Kim J, Yao L, Dong X, et al. 2020. Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water. Chemical Engineering Journal 384:123276

doi: 10.1016/j.cej.2019.123276
[150]

Nomngongo PN, Selahle SK, Mpupa A, Nqombolo A, Munonde TS, et al. 2024. Molecularly imprinted polymers @ metal and covalent organic frameworks: from synthesis to application in analytical chemistry. TrAC Trends in Analytical Chemistry 179:117906

doi: 10.1016/j.trac.2024.117906
[151]

Hua Y, Kukkar D, Brown RJC, Kim KH. 2023. Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites. Critical Reviews in Environmental Science and Technology 53:258−289

doi: 10.1080/10643389.2022.2050161
[152]

Yang B, Dai J, Zhao Y, Wu J, Ji C, et al. 2022. Advances in preparation, application in contaminant removal, and environmental risks of biochar-based catalysts: a review. Biochar 4:51

doi: 10.1007/s42773-022-00169-8
[153]

Raclavská H, Růžičková J, Škrobánková H, Koval S, Kucbel M, et al. 2018. Possibilities of the utilization of char from the pyrolysis of tetrapak. Journal of Environmental Management 219:231−238

doi: 10.1016/j.jenvman.2018.05.002
[154]

Shaheen SM, Niazi NK, Hassan NEE, Bibi I, Wang H, et al. 2019. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews 64:216−247

doi: 10.1080/09506608.2018.1473096
[155]

Lyu H, He Y, Tang J, Hecker M, Liu Q, et al. 2016. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution 218:1−7

doi: 10.1016/j.envpol.2016.08.014
[156]

Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, et al. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41:990−1000

doi: 10.2134/jeq2011.0070
[157]

Oleszczuk P, Jośko I, Kuśmierz M, Futa B, Wielgosz E, et al. 2014. Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma 213:502−511

doi: 10.1016/j.geoderma.2013.08.027
[158]

Kuśmierz M, Oleszczuk P. 2014. Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk. Environmental Science and Pollution Research 21:3646−3652

doi: 10.1007/s11356-013-2334-1
[159]

Keiluweit M, Kleber M, Sparrow MA, Simoneit BRT, Prahl FG. 2012. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environmental Science & Technology 46:9333−9341

doi: 10.1021/es302125k[PubMed
[160]

Alegbeleye OO, Opeolu BO, Jackson VA. 2017. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental Management 60:758−783

doi: 10.1007/s00267-017-0896-2
[161]

Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, et al. 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology 46(5):2830−2838

doi: 10.1021/es203984k
[162]

Freddo A, Cai C, Reid BJ. 2012. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmental Pollution 171:18−24

doi: 10.1016/j.envpol.2012.07.009
[163]

Liu Y, Dai Q, Jin X, Dong X, Peng J, et al. 2018. Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? Environmental Science & Technology 52:12740−12747

doi: 10.1021/acs.est.8b00672
[164]

Wang X, Lian W, Sun X, Ma J, Ning P. 2018. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution. Frontiers of Environmental Science & Engineering 12:9

doi: 10.1007/s11783-018-1066-3
[165]

Lei C, Sun Y, Tsang DCW, Lin D. 2018. Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution 232:10−30

doi: 10.1016/j.envpol.2017.09.052
[166]

Zhang S, Lu X. 2018. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere 206:777−783

doi: 10.1016/j.chemosphere.2018.05.073
[167]

Xie X, Li S, Zhang H, Wang Z, Huang H. 2019. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation. Science of The Total Environment 659:529−539

doi: 10.1016/j.scitotenv.2018.12.401
[168]

Han Y, Shi W, Rong J, Zha S, Guan X, et al. 2019. Exposure to waterborne nTiO2 reduces fertilization success and increases polyspermy in a bivalve mollusc: a threat to population recruitment. Environmental Science & Technology 53(21):12754−12763

doi: 10.1021/acs.est.9b03675
[169]

Suresh AK, Pelletier DA, Doktycz MJ. 2013. Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463−474

doi: 10.1039/C2NR32447D
[170]

Zhuang Y, Kong Y, Liu Q, Shi B. 2017. Alcohol-assisted self-assembled 3D hierarchical iron (hydr)oxide nanostructures for water treatment. CrystEngComm 19:5926−5933

doi: 10.1039/C7CE01320E
[171]

Zhuang Y, Han B, Chen R, Shi B. 2019. Structural transformation and potential toxicity of iron-based deposits in drinking water distribution systems. Water Research 165:114999

doi: 10.1016/j.watres.2019.114999
[172]

Zhang J, Guo W, Li Q, Wang Z, Liu S. 2018. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environmental Science: Nano 5:2482−2499

doi: 10.1039/C8EN00688A
[173]

Lu L, Yu W, Wang Y, Zhang K, Zhu X, et al. 2020. Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. Biochar 2:1−31

doi: 10.1007/s42773-020-00041-7
[174]

Sverdrup LE, Källqvist T, Kelley AE, Fürst CS, Hagen SB. 2001. Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments. Chemosphere 45(4−5):653−658

doi: 10.1016/S0045-6535(01)00044-3
[175]

Arabi M, Ostovan A, Li J, Wang X, Zhang Z, et al. 2021. Molecular imprinting: green perspectives and strategies. Advanced Materials 33:e2100543

doi: 10.1002/adma.202100543
[176]

Cheng W, Zeng X, Chen H, Li Z, Zeng W, et al. 2019. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13(8):8537−8565

doi: 10.1021/acsnano.9b04436
[177]

Wang WL, Wu QY, Huang N, Xu ZB, Lee MY, et al. 2018. Potential risks from UV/H2O2 oxidation and UV photocatalysis: a review of toxic, assimilable, and sensory-unpleasant transformation products. Water Research 141:109−125

doi: 10.1016/j.watres.2018.05.005
[178]

Haddad T, Baginska E, Kümmerer K. 2015. Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Research 72:75−126

doi: 10.1016/j.watres.2014.12.042
[179]

Escher BI, Fenner K. 2011. Recent advances in environmental risk assessment of transformation products. Environmental Science & Technology 45(9):3835−3847

doi: 10.1021/es1030799
[180]

Wang WL, Wu QY, Du Y, Huang N, Hu HY. 2018. Elimination of chlorine-refractory carbamazepine by breakpoint chlorination: reactive species and oxidation byproducts. Water Research 129:115−122

doi: 10.1016/j.watres.2017.11.016
[181]

Wang Y, Rao L, Wang P, Shi Z, Zhang L. 2020. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental 262:118308

doi: 10.1016/j.apcatb.2019.118308