[1]

Quiros CF, Farnham MW. 2011. The genetics of Brassica oleracea. In Genetics and Genomics of the Brassicaceae, eds. Schmidt R, Bancroft I. New York, USA: Springer. pp. 261−289 doi: 10.1007/978-1-4419-7118-0_9

[2]

Warwick SI, Francis A, Al-Shehbaz IA. 2006. Brassicaceae: species checklist and database on CD-Rom. Plant Systematics and Evolution 259:249−258

doi: 10.1007/s00606-006-0422-0
[3]

Li X, Wang Y, Cai C, Ji J, Han F, et al. 2024. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nature Genetics 56:517−529

doi: 10.1038/s41588-024-01655-4
[4]

Ma W, Zhang P, Zhao J, Hong Y. 2023. Chinese cabbage: an emerging model for functional genomics in leafy vegetable crops. Trends in Plant Science 28:515−518

doi: 10.1016/j.tplants.2023.02.008
[5]

Kopsell DA, Kopsell DE. 2006. Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends in Plant Science 11:499−507

doi: 10.1016/j.tplants.2006.08.006
[6]

Liang Y, Li Y, Sun AD, Lu HY, Liu XJ. 2019. Effects of different cultivation methods on nutritional constituents of cabbage. Quality And Safety Of Agro-Products 2019:73−77 (in Chinese)

doi: 10.3969/j.issn.1674-8255.2019.04.015
[7]

Liu S, Liu Y, Yang X, Tong C, Edwards D, et al. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5:3930

doi: 10.1038/ncomms4930
[8]

Qin WB, Dai ZL, Pan YP. 2010. Effects of sowing data on yield, quality and resistance of overwintering cabbage hanyu No. 21. Acta Agriculturae Jiangxi 22:67−69 (in Chinese)

doi: 10.3969/j.issn.1001-8581.2010.03.022
[9]

Pan YF, Dai ZL, Pan YF, Pan YP. 2012. Suitable planting time of high quality Brass-resistant spring cabbage variety Runyu. Jiangsu Agricultural Sciences 2012:142−143 (in Chinese)

doi: 10.3969/j.issn.1002-1302.2012.11.058
[10]

Pan YF, Dai ZL, Mao ZL, Wu GP. 2010. Effect of seedling age on yield and harvest time of cabbage. Acta Agriculturae Jiangxi 22:64−65 (in Chinese)

doi: 10.3969/j.issn.1001-8581.2010.05.021
[11]

He J, Xiong XQ, Lu YL. 2011. Effect of density and seeding time on yield of rutabaga. Prataculture Animal Husbandry 2011:7−10 (in Chinese)

doi: 10.3969/j.issn.1673-8403.2011.04.003
[12]

Sheng X, Cai S, Shen Y, Yu H, Wang J, et al. 2024. QTL analysis and fine mapping of a major QTL and identification of candidate genes controlling curd setting height in cauliflower. Vegetable Research 4:e008

doi: 10.48130/vegres-0024-0002
[13]

Zhang B, Wu Y, Li S, Yang L, Zhuang M, et al. 2024. Two large inversions seriously suppress recombination and are essential for key genotype fixation in cabbage (Brassica oleracea L. var. capitata). Horticulture Research 11:uhae030

doi: 10.1093/hr/uhae030
[14]

Meng C, Liu X, Wu F, Ma X, Ma L, et al. 2025. DNA methylation, metabolome, and transcriptome analysis reveal epigenomic differences between diploid Chinese cabbage seeds and tetraploid Chinese cabbage seeds. Genomics 117:111088

doi: 10.1016/j.ygeno.2025.111088
[15]

Yi S, Jin WT, Yuan YN, Fang YH. 2018. An optimized CTAB method for genomic DNA extraction from freshly-picked pinnae of fern, Adiantum capillus-veneris L. Bio-protocol 8:e2906

doi: 10.21769/BioProtoc.2906
[16]

Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, et al. 2018. SOAPnuke: a mapreduce acceleration supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigaence 7:1−6

doi: 10.1093/gigascience/gix120
[17]

Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754−1760

doi: 10.1093/bioinformatics/btp324
[18]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−2079

doi: 10.1093/bioinformatics/btp352
[19]

Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, et al. 2009. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome research 19:327−335

doi: 10.1101/gr.073585.107
[20]

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, et al. 2015. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4:7

doi: 10.1186/s13742-015-0047-8
[21]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−2158

doi: 10.1093/bioinformatics/btr330
[22]

Song X, Hu J, Wu T, Yang Q, Feng X, et al. 2021. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. Horticulture Research 8:48

doi: 10.1038/s41438-021-00484-4
[23]

Bu D, Luo H, Huo P, Wang Z, Zhang S, et al. 2021. KOBAS−i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research 49:W317−W325

doi: 10.1093/nar/gkab447
[24]

oung MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-SEQ: accounting for selection bias. Genome biology 11:R14

doi: 10.1186/gb-2010-11-2-r14
[25]

Ferreira JA, Zwinderman AH. 2006. On the benjamini-hochberg method. The Annals of Statistics 34:1827−1849

doi: 10.1214/009053606000000425
[26]

Liu Z, Li N, Yu T, Wang Z, Wang J, et al. 2022. The brassicaceae genome resource (TBGR): a comprehensive genome platform for brassicaceae plants. Plant Physiology 190:226−237

doi: 10.1093/plphys/kiac266
[27]

Guo N, Wang S, Wang T, Duan M, Zong M, et al. 2024. A graph-based pan-genome of Brassica oleracea provides new insights into its domestication and morphotype diversification. Plant Communications 5:100791

doi: 10.1016/j.xplc.2023.100791
[28]

Cai C, Bucher J, Bakker FT, Bonnema G. 2022. Evidence for two domestication lineages supporting a middle-eastern origin for Brassica oleracea crops from diversified kale populations. Horticulture Research 9:uhac033

doi: 10.1093/hr/uhac033
[29]

Xing S, Liu L, Guan H, Zhang X, Sun X, et al. 2021. Dynamic prediction model of ripening degree of Chinese spicy cabbage under fluctuation temperatures. Food Packaging and Shelf Life 30:100744

doi: 10.1016/j.fpsl.2021.100744
[30]

Qiao J, Shi Y, Wang L. 2015. Research progress on early maturity breeding of fruit vegetables. Chinese Vegetable 1:14 (in Chinese)

[31]

Yang LM, Fang ZY. 2022. Researches on cabbage genetics and breeding in china for 60 years. Acta Horticulturae Sinica 49:2075−2098 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2022-0711
[32]

Qin WB, Shan X, Zhang ZC, Dai ZL. 2023. Breeding of new cabbage variety ruigan 35 and its industrialization application prospect. Hans Journal of Agricultural Sciences 13:1−8 (in Chinese)

doi: 10.12677/HJAS.2023.131001
[33]

Yan SB, Hu LJ, Ge CQ, Yu B, Huang KM. 2024. Anniversary efficiency cultivation techniques of stem lettuce-fresh corn-cabbage. China Academic 4:162−164 (in Chinese)

doi: 10.19462/j.cnki.zgzy.20240118003
[34]

Liang R, Su Y, Qin X, Gao Z, Fu Z, et al. 2022. Comparative transcriptomic analysis of two Cucumis melo var. saccharinus germplasms differing in fruit physical and chemical characteristics. BMC Plant Biology 22:193

doi: 10.1186/s12870-022-03550-8
[35]

Dabesor PA, Sanni DM, Kolawole AO, Enujiugha VN, Lawal OT, et al. 2022. Changes in physicochemical properties and enzymes associated with ripening of snake tomato (Trichosanthes Cucumerina L.) fruit. Biocatalysis and Agricultural Biotechnology 40:102313

doi: 10.1016/j.bcab.2022.102313
[36]

Saladié M, Cañizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudière C, et al. 2015. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics 16:440

doi: 10.1186/s12864-015-1649-3
[37]

Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, et al. 2017. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18:3

doi: 10.1186/s12864-016-3442-3
[38]

Guo S, Sun H, Zhang H, Liu J, Ren Y, et al. 2015. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10:e0130267

doi: 10.1371/journal.pone.0130267
[39]

Yue Q, Xie Y, Yang X, Zhang Y, Li Z, et al. 2024. An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening. The Plant Cell 37:koaf007

doi: 10.1093/plcell/koaf007
[40]

Niu Q, Xu Y, Huang H, Li L, Tang D, et al. 2025. Two transcription factors play critical roles in mediating epigenetic regulation of fruit ripening in tomato. Proceedings of the National Academy of Sciences of the United States of America 122:e2422798122

doi: 10.1073/pnas.2422798122
[41]

Liu Z, Fu Y, Wang H, Zhang Y, Han J, et al. 2023. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. Horticulture Research 10:uhad187

doi: 10.1093/hr/uhad187
[42]

Zuo J, Grierson D, Courtney LT, Wang Y, Gao L, et al. 2020. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. The Plant Journal 103:980−994

doi: 10.1111/tpj.14778
[43]

Cui S, Yao B, Gao M, Sun X, Gou D, et al. 2017. Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydrate Polymers 157:766−774

doi: 10.1016/j.carbpol.2016.10.052
[44]

Lyu M, Iftikhar J, Guo R, Wu B, Cao J. 2020. Patterns of expansion and expression divergence of the polygalacturonase gene family in Brassica oleracea. International Journal of Molecular Sciences 21:5706

doi: 10.3390/ijms21165706
[45]

Mohammad M, Ding P. 2019. Physico-textural and cellular structure changes of Carissa congesta fruit during growth and development. Scientia Horticulturae 246:380−389

doi: 10.1016/j.scienta.2018.09.024
[46]

Jusoh NAM, Ding P. 2023. Morphometrics and structural changes of fig (Ficus carica L. var. Ipoh Blue Giant) syconium during growth, maturation and on-tree ripening. Scientia Horticulturae 321:112347

doi: 10.1016/j.scienta.2023.112347
[47]

Li R, Wang Y, Li W, Shao Y. 2023. Comparative analyses of ripening, texture properties and cell wall composition in three tropical fruits treated with 1-methylcyclopropene during cold storage. Horticulturae 9:126

doi: 10.3390/horticulturae9020126
[48]

Proctor A, Peng LC. 1989. Pectin transitions during blueberry fruit development and ripening. Journal of Food Science 54:385−387

doi: 10.1111/j.1365-2621.1989.tb03088.x
[49]

Deng L, Yang T, Li Q, Chang Z, Sun C, et al. 2023. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. The Plant Cell 35:1038−1057

doi: 10.1093/plcell/koac349
[50]

Zhang K, Yang Y, Wu J, Liang J, Chen S, et al. 2022. A cluster of transcripts identifies a transition stage initiating leafy head growth in heading morphotypes of Brassica. The Plant Journal 110:688−706

doi: 10.1111/tpj.15695
[51]

Liu Z, Zhang C, He J, Li C, Fu Y, et al. 2024. plantGIR: a genomic database of plants. Horticulture Research 11:uhae342

doi: 10.1093/hr/uhae342