[1]

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768−771

doi: 10.1126/science.1260352
[2]

MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373:61−65

doi: 10.1126/science.abg5433
[3]

Kalogerakis N, Karkanorachaki K, Kalogerakis GC, Triantafyllidi EI, Gotsis AD, et al. 2017. Microplastics generation: onset of fragmentation of polyethylene films in marine environment mesocosms. Frontiers in Marine Science 4:84

doi: 10.3389/fmars.2017.00084
[4]

Behera S, Das S. 2023. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere 334:138928

doi: 10.1016/j.chemosphere.2023.138928
[5]

Amaral-Zettler LA, Zettler ER, Mincer TJ. 2020. Ecology of the plastisphere. Nature Reviews Microbiology 18:139−151

doi: 10.1038/s41579-019-0308-0
[6]

Zettler ER, Mincer TJ, Amaral-Zettler LA. 2013. Life in the "plastisphere": microbial communities on plastic marine debris. Environmental Science & Technology 47:7137−7146

doi: 10.1021/es401288x
[7]

Miao L, Li W, Adyel TM, Yao Y, Deng Y, et al. 2023. Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems. Water Research 229:119406

doi: 10.1016/j.watres.2022.119406
[8]

Zhang SJ, Zeng YH, Zhu JM, Cai ZH, Zhou J. 2022. The structure and assembly mechanisms of plastisphere microbial community in natural marine environment. Journal of Hazardous Materials 421:126780

doi: 10.1016/j.jhazmat.2021.126780
[9]

Zhu M, Qi X, Yuan Y, Zhou H, Rong X, et al. 2023. Deciphering the distinct successional patterns and potential roles of abundant and rare microbial taxa of urban riverine plastisphere. Journal of Hazardous Materials 450:131080

doi: 10.1016/j.jhazmat.2023.131080
[10]

Zhou W, Huang D, Chen S, Wang G, Li R, et al. 2024. Microplastic dilemma: assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. Journal of Hazardous Materials 477:135240

doi: 10.1016/j.jhazmat.2024.135240
[11]

Rüthi J, Rast BM, Qi W, Perez-Mon C, Pardi-Comensoli L, et al. 2023. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling. Journal of Hazardous Materials 441:129941

doi: 10.1016/j.jhazmat.2022.129941
[12]

Meng L, Liang L, Shi Y, Yin H, Li L, et al. 2024. Biofilms in plastisphere from freshwater wetlands: biofilm formation, bacterial community assembly, and biogeochemical cycles. Journal of Hazardous Materials 476:134930

doi: 10.1016/j.jhazmat.2024.134930
[13]

Ran T, Liao H, Zhao Y, Li J. 2024. Soil plastisphere interferes with soil bacterial community and their functions in the rhizosphere of pepper (Capsicum annuum L.). Ecotoxicology and Environmental Safety 270:115946

doi: 10.1016/j.ecoenv.2024.115946
[14]

Rillig MC, Kim SW, Zhu YG. 2024. The soil plastisphere. Nature Reviews Microbiology 22:64−74

doi: 10.1038/s41579-023-00967-2
[15]

Zhou S, Xiong C, Su Y, Wang Y, Gao Y, et al. 2022. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: distribution and influencing factors. Environmental Pollution 304:119158

doi: 10.1016/j.envpol.2022.119158
[16]

Zhu D, Ma J, Li G, Rillig MC, Zhu YG. 2022. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. The ISME Journal 16:521−532

doi: 10.1038/s41396-021-01103-9
[17]

Li H, Luo Q, Zhao S, Zhao P, Yang X, et al. 2022. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Environmental Pollution 313:120185

doi: 10.1016/j.envpol.2022.120185
[18]

Shi Z, Liu Q, Zhou M, Xu W, Luo G. 2025. Persistent risks in the effluents of wastewater treatment plants: mobile genetic elements and viral-mediated dissemination of pathogenic antibiotic-resistant bacteria. Environmental Science & Technology 59:23374−23385

doi: 10.1021/acs.est.5c08352
[19]

Song R, Sun Y, Li X, Ding C, Huang Y, et al. 2022. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: a metagenomic perspective. Science of The Total Environment 828:154596

doi: 10.1016/j.scitotenv.2022.154596
[20]

Li K, Xu L, Bai X, Zhang G, Zhang M, et al. 2024. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: evidence from metagenomic analysis of plastisphere. Journal of Hazardous Materials 465:133428

doi: 10.1016/j.jhazmat.2024.133428
[21]

Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. 2024. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. Journal of Hazardous Materials 465:133335

doi: 10.1016/j.jhazmat.2023.133335
[22]

Wang Y, Liu X, Huang C, Han W, Gu P, et al. 2025. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: health risk quantification and driving mechanism interpretation. Water Research 271:122896

doi: 10.1016/j.watres.2024.122896
[23]

Huang H, Lin L, Liu Q, Li X, Liao J, et al. 2025. Hydrogen sulfide drives horizontal transfer of plasmid-borne antibiotic resistance genes in wastewater ecosystems. Nature Water 3:1268−1280

doi: 10.1038/s44221-025-00523-7
[24]

Guo XP, Sun XL, Chen YR, Hou L, Liu M, et al. 2020. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. Science of The Total Environment 745:140916

doi: 10.1016/j.scitotenv.2020.140916
[25]

Rohrbach S, Gkoutselis G, Hink L, Weig AR, Obst M, et al. 2023. Microplastic polymer properties as deterministic factors driving terrestrial plastisphere microbiome assembly and succession in the field. Environmental Microbiology 25:2681−2697

doi: 10.1111/1462-2920.16234
[26]

Hüffer T, Hofmann T. 2016. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution 214:194−201

doi: 10.1016/j.envpol.2016.04.018
[27]

Andrady AL. 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62:1596−1605

doi: 10.1016/j.marpolbul.2011.05.030
[28]

Tang Z, Zhu F, Jiang T, Wei F, Gao Y, et al. 2023. Oxygen-containing functional groups enhance uranium adsorption by aged polystyrene microplastics: experimental and theoretical perspectives. Chemical Engineering Journal 465:142730

doi: 10.1016/j.cej.2023.142730
[29]

Fan P, Yu H, Xi B, Tan W. 2022. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environment International 163:107244

doi: 10.1016/j.envint.2022.107244
[30]

Pang R, Wang X, Zhang L, Lei L, Han Z, et al. 2024. Genome-centric metagenomics insights into the plastisphere-driven natural degradation characteristics and mechanism of biodegradable plastics in aquatic environments. Environmental Science & Technology 58:18915−18927

doi: 10.1021/acs.est.4c04965
[31]

Zhang Y, Ma J, Song YQ, Li G, O'Connor P. 2024. Stronger deterministic processes shape the plastisphere microbiota of biodegradable microplastics compared to non-biodegradable microplastics in farmland soil. Applied Soil Ecology 196:105312

doi: 10.1016/j.apsoil.2024.105312
[32]

Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science 178:189−195

doi: 10.1016/j.ecss.2015.12.003
[33]

Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, et al. 2019. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Research 155:410−422

doi: 10.1016/j.watres.2019.02.054
[34]

Chen L, Mao C, Yuan S, Pu X, Liang H, et al. 2024. Comparison of aging behavior and adsorption processes of biodegradable and conventional microplastics. Chemical Engineering Journal 502:157915

doi: 10.1016/j.cej.2024.157915
[35]

Peng C, Wang J, Liu X, Wang L. 2022. Differences in the plastispheres of biodegradable and non-biodegradable plastics: a mini review. Frontiers in Microbiology 13:849147

doi: 10.3389/fmicb.2022.849147
[36]

Blondel E, Buschman FA. 2022. Vertical and horizontal plastic litter distribution in a bend of a tidal river. Frontiers in Environmental Science 10:861457

doi: 10.3389/fenvs.2022.861457
[37]

Kayani MuR, Doyle SM, Sangwan N, Wang G, Gilbert JA, et al. 2018. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 6:123

doi: 10.1186/s40168-018-0505-5
[38]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[39]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−1760

doi: 10.1093/bioinformatics/btp324
[40]

Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K, et al. 2022. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10:33

doi: 10.1186/s40168-021-01213-8
[41]

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−1659

doi: 10.1093/bioinformatics/btl158
[42]

Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158

doi: 10.1186/s40168-018-0541-1
[43]

Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925−1927

doi: 10.1093/bioinformatics/btz848
[44]

Yin X, Jiang XT, Chai B, Li L, Yang Y, et al. 2018. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34:2263−2270

doi: 10.1093/bioinformatics/bty053
[45]

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068−2069

doi: 10.1093/bioinformatics/btu153
[46]

Chen L, Yang J, Yu J, Yao Z, Sun L, et al. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Research 33:D325−D328

doi: 10.1093/nar/gki008
[47]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[48]

Ramsperger AFRM, Stellwag AC, Caspari A, Fery A, Lueders T, et al. 2020. Structural diversity in early-stage biofilm formation on microplastics depends on environmental medium and polymer properties. Water 12:3216

doi: 10.3390/w12113216
[49]

MacLean J, Bartholomäus A, Blukis R, Liebner S, Wagner D. 2024. Metatranscriptomics of microbial biofilm succession on HDPE foil: uncovering plastic-degrading potential in soil communities. Environmental Microbiome 19:95

doi: 10.1186/s40793-024-00621-1
[50]

Xue N, Wang L, Li W, Wang S, Pan X, et al. 2020. Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient. Environmental Pollution 265:114641

doi: 10.1016/j.envpol.2020.114641
[51]

Props R, Denef VJ. 2020. Temperature and nutrient levels correspond with lineage-specific microdiversification in the ubiquitous and abundant freshwater genus Limnohabitans. Applied and Environmental Microbiology 86:e00140-20

doi: 10.1128/AEM.00140-20
[52]

Yang N, Driessen AJM. 2015. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter. Extremophiles 19:101−108

doi: 10.1007/s00792-014-0688-z
[53]

Jezberová J, Jezbera J, Znachor P, Nedoma J, Kasalický V, et al. 2017. The Limnohabitans genus harbors generalistic and opportunistic subtypes: evidence from spatiotemporal succession in a canyon-shaped reservoir. Applied and Environmental Microbiology 83:e01530-17

doi: 10.1128/AEM.01530-17
[54]

Hong F, Chang Y, Fan Z, Zhu W, Jin M. 2019. Study on soil microbial community structure of river wetland in Tumen River Basin. IOP Conference Series: Earth and Environmental Science 330:032084

doi: 10.1088/1755-1315/330/3/032084
[55]

Suresh S, Ambily SKA, Chandran P. 2024. Plastic debris in the aquatic environment: an emerging substratum for antimicrobial resistant (AMR) biofilms. Archives of Environmental Contamination and Toxicology 87:311−320

doi: 10.1007/s00244-024-01086-6
[56]

Silva I, Rodrigues ET, Tacão M, Henriques I. 2023. Microplastics accumulate priority antibiotic-resistant pathogens: evidence from the riverine plastisphere. Environmental Pollution 332:121995

doi: 10.1016/j.envpol.2023.121995
[57]

Zhang W, Geng J, Sun M, Jiang C, Lin H, et al. 2024. Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. Environmental Research 259:119562

doi: 10.1016/j.envres.2024.119562
[58]

Thakali O, Tandukar S, Brooks JP, Sherchan SP, Sherchand JB, et al. 2020. The occurrence of antibiotic resistance genes in an urban river in Nepal. Water 12:450

doi: 10.3390/w12020450
[59]

Zhang T, Zhou S, Cheng C, Yang Y, Yang D, et al. 2025. Metagenomic assembled genomes profile potential pathogens and antibiotic-resistant pathogens in an urban river. Ecotoxicology and Environmental Safety 294:118063

doi: 10.1016/j.ecoenv.2025.118063
[60]

Zhao X, Wang X, Lang H, Zhang P, Ni J, et al. 2024. Effects of reclaimed water supplementation on the occurrence and distribution characteristics of antibiotic resistance genes in a recipient river. Processes 12:1717

doi: 10.3390/pr12081717
[61]

Hao YL, Li G, Xiao ZF, Liu N, Azeem M, et al. 2021. Distribution and influence on the microbial ecological relationship of antibiotic resistance genes in soil at a watershed scale. Sustainability 13:9748

doi: 10.3390/su13179748
[62]

Pow CJ, Fellows R, White HL, Woodford L, Quilliam RS. 2025. Fluvial flooding and plastic pollution – the delivery of potential human pathogenic bacteria into agricultural fields. Environmental Pollution 366:125518

doi: 10.1016/j.envpol.2024.125518