[1]

Zou X, Du M, Liu Y, Wu L, Xu L, et al. 2021. CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. The Plant Journal 106:1039−1057

doi: 10.1111/tpj.15217
[2]

Peng A, Chen S, Lei T, Xu L, He Y, et al. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal 15:1509−1519

doi: 10.1111/pbi.12733
[3]

Marothia D, Kaur N, Jhamat C, Sharma I, Pati PK. 2023. Plant lectins: classical molecules with emerging roles in stress tolerance. International Journal of Biological Macromolecules 244:125272

doi: 10.1016/j.ijbiomac.2023.125272
[4]

Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, et al. 2018. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Scientific Reports 8:11508

doi: 10.1038/s41598-018-29439-x
[5]

Liu Y, Lin Y, Wei F, Lv Y, Xie F, et al. 2023. G-type receptor-like kinase AsNIP43 interacts with rhizobia effector nodulation outer protein P and is required for symbiosis. Plant Physiology 193:1527−1546

doi: 10.1093/plphys/kiad318
[6]

Wang M, Peng X, Chen Z, Tang X. 2020. Research advances on lectin receptor-like kinases in plants. Chinese Bulletin of Botany 55:96−105 (in Chinese)

doi: 10.11983/CBB19130
[7]

Wang F, Li Y, Li G, Chen S. 2023. Genetic components of self-incompatibility in Brassica vegetables. Horticulturae 9:265

doi: 10.3390/horticulturae9020265
[8]

Gao Q, Yin X, Wang F, Hu S, Liu W, et al. 2023. OsJRL40, a jacalin-related lectin gene, promotes salt stress tolerance in rice. International Journal of Molecular Sciences 24:7441

doi: 10.3390/ijms24087441
[9]

He X, Li L, Xu H, Xi J, Cao X, et al. 2017. A rice jacalin‐related mannose‐binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice. Plant Biology 19:257−267

doi: 10.1111/plb.12514
[10]

Jung IJ, Ahn JW, Jung S, Hwang JE, Hong MJ, et al. 2019. Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC Plant Biology 19:561

doi: 10.1186/s12870-019-2056-8
[11]

Yan X, Huang Y, Song H, Chen F, Geng Q, et al. 2021. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genetics 17:e1009636

doi: 10.1371/journal.pgen.1009636
[12]

Choteau L, Parny M, François N, Bertin B, Fumery M, et al. 2016. Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Mucosal Immunology 9:767−776

doi: 10.1038/mi.2015.100
[13]

He P, Jia H, Xue H, Zeng Y, Tian L, et al. 2022. Expression of modified snowdrop lectin (Galanthus nivalis Agglutinin) protein confers aphids and Plutella xylostella resistance in Arabidopsis and cotton. Genes 13:1169

doi: 10.3390/genes13071169
[14]

Ohizumi Y, Gaidamashvili M, Ohwada S , Matsuda K, Kominami J, et al. 2009. Mannose-binding lectin from yam (Dioscorea batatas) tubers with insecticidal properties against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry 57:2896−2902

doi: 10.1021/jf8040269
[15]

Yan L, Luo T, Huang D, Wei M, Ma Z, et al. 2023. Recent advances in molecular mechanism and breeding utilization of brown planthopper resistance genes in rice: an integrated review. International Journal of Molecular Sciences 24:12061

doi: 10.3390/ijms241512061
[16]

Miao J, Wu Y, Xu W, Hu L, Yu Z, et al. 2011. The impact of transgenic wheat expressing Gna (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi. Environmental Entomology 40:743−748

doi: 10.1603/EN10261
[17]

Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y, et al. 2018. OsCERK1 plays a crucial role in the lipopolysaccharide‐induced immune response of rice. New Phytologist 217:1042−1049

doi: 10.1111/nph.14941
[18]

Bevitori R, Sircar S, de Mello RN, Togawa RC, Côrtes MVCB, et al. 2020. Identification of co-expression gene networks controlling rice blast disease during an incompatible reaction. Genetics and Molecular Research 19:gmr18579

doi: 10.4238/gmr18579
[19]

Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology 16:426−433

doi: 10.1038/ni.3124
[20]

Hwang IS, Hwang BK. 2011. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiology 155:447−463

doi: 10.1104/pp.110.164848
[21]

Kim NH, Lee DH, Choi DS, Hwang BK. 2015. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. Plant Science 241:307−315

doi: 10.1016/j.plantsci.2015.07.003
[22]

Del Rio M, de la Canal L, Pinedo M, Regente M. 2018. Internalization of a sunflower mannose-binding lectin into phytopathogenic fungal cells induces cytotoxicity. Journal of Plant Physiology 221:22−31

doi: 10.1016/j.jplph.2017.12.001
[23]

Guidarelli M, Zoli L, Orlandini A, Bertolini P, Baraldi E. 2014. The mannose‐binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. Molecular Plant Pathology 15:832−840

doi: 10.1111/mpp.12143
[24]

Muthamilarasan M, Prasad M. 2013. Plant innate immunity: an updated insight into defense mechanism. Journal of Biosciences 38:433−449

doi: 10.1007/s12038-013-9302-2
[25]

Tabassum N, Blilou I. 2022. Cell-to-cell communication during plant-pathogen interaction. Molecular Plant-Microbe Interactions 35:98−108

doi: 10.1094/MPMI-09-21-0221-CR
[26]

Mei P, Song Z, Li ZA, Zhou C. 2019. Functional study of Csrbohs in defence response against Xanthomonas citri ssp. citri. Functional Plant Biology 46:543−554

doi: 10.1071/FP18243
[27]

Li Q, Xian B, Yu Q, Jia R, Zhang C, et al. 2024. The CsAP2-09-CsWRKY25-CsRBOH2 cascade confers resistance against citrus bacterial canker by regulating ROS homeostasis. Plant Journal 118:534−548

doi: 10.1111/tpj.16623
[28]

Zhang M, Li W, Zhang T, Liu Y, Liu L. 2024. Botrytis cinerea-induced F-box protein 1 enhances disease resistance by inhibiting JAO/JOX-mediated jasmonic acid catabolism in Arabidopsis. Molecular Plant 17:297−311

doi: 10.1016/j.molp.2023.12.020
[29]

Ding P, Ding Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science 25:549−565

doi: 10.1016/j.tplants.2020.01.004
[30]

Xiao YX, Xiao C, Tong Z, He XJ, Wang ZQ, et al. 2025. Four MES genes from calamondin (Citrofortunella microcarpa) regulated citrus bacterial canker resistance through the plant hormone pathway. Frontiers in Plant Science 15:1513430

doi: 10.3389/fpls.2024.1513430
[31]

Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, et al. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology 144:1863−1877

doi: 10.1104/pp.107.099226
[32]

Audenaert K, De Meyer GB, Höfte MM. 2002. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology 128:491−501

doi: 10.1104/pp.010605
[33]

Li G, Meng X, Wang R, Mao G, Han L, et al. 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics 8:e1002767

doi: 10.1371/journal.pgen.1002767
[34]

Long Q, Xie Y, He Y, Li Q, Zou X, et al. 2019. Abscisic acid promotes jasmonic acid accumulation and plays a key role in Citrus canker development. Frontiers in Plant Science 10:1634

doi: 10.3389/fpls.2019.01634
[35]

Liu H, Wang X, Liu S, Huang Y, Guo YX, et al. 2022. Citrus pan-genome to breeding database (CPBD): a comprehensive genome database for citrus breeding. Molecular Plant 15:1503−1505

doi: 10.1016/j.molp.2022.08.006
[36]

Wang J, Chen D, Lei Y, Chang JW, Hao BH, et al. 2014. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome. PLoS One 9:e87723

doi: 10.1371/journal.pone.0087723
[37]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−1297

doi: 10.1093/bioinformatics/btu817
[38]

Wheeler TJ, Eddy SR. 2013. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29:2487−2489

doi: 10.1093/bioinformatics/btt403
[39]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−1549

doi: 10.1093/molbev/msy096
[40]

Wang X, Guo R, Tu M, Wang D, Guo C, et al. 2017. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science 8:97

doi: 10.3389/fpls.2017.00097
[41]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−408

doi: 10.1006/meth.2001.1262
[42]

Du M, Wang S, Dong L, Qu R, Zheng L, et al. 2022. Overexpression of a "Candidatus liberibacter asiaticus" effector gene CaLasSDE115 contributes to early colonization in Citrus sinensis. Frontiers in Microbiology 12:797841

doi: 10.3389/fmicb.2021.797841
[43]

Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, et al. 2012. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One 7:e31263

doi: 10.1371/journal.pone.0031263
[44]

Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86

doi: 10.1186/s12870-016-0771-y
[45]

Pitino M, Armstrong CM, Duan Y. 2015. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research 2:15042

doi: 10.1038/hortres.2015.42
[46]

Wang W, Chen D, Zhang X, Liu D, Cheng Y, et al. 2018. Role of plant respiratory burst oxidase homologs in stress responses. Free Radical Research 52:826−839

doi: 10.1080/10715762.2018.1473572
[47]

Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, et al. 2021. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences 22:9326

doi: 10.3390/ijms22179326
[48]

Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, et al. 2020. NADPH oxidases: the vital performers and center hubs during plant growth and signaling. Cells 9:437

doi: 10.3390/cells9020437
[49]

Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. 2021. Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science 11:618835

doi: 10.3389/fpls.2020.618835
[50]

Fujita M, Hasanuzzaman M. 2022. Approaches to enhancing antioxidant defense in plants. Antioxidants 11:925

doi: 10.3390/antiox11050925
[51]

Hou S, Tsuda K. 2022. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry 66:647−656

doi: 10.1042/EBC20210090
[52]

Li S, Liu S, Zhang Q, Cui M, Zhao M, et al. 2022. The interaction of ABA and ROS in plant growth and stress resistances. Frontiers in Plant Science 13:1050132

doi: 10.3389/fpls.2022.1050132
[53]

Ding LN, Li YT, Wu YZ, Li T, Geng R, et al. 2022. Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences 23:16200

doi: 10.3390/ijms232416200
[54]

Huang X, Su L, Xian B, Yu Q, Zhang M, et al. 2024. Genome-wide identification and characterization of the sweet orange (Citrus sinensis) basic helix-loop-helix (bHLH) family reveals a role for CsbHLH085 as a regulator of citrus bacterial canker resistance. International Journal of Biological Macromolecules 267:131442

doi: 10.1016/j.ijbiomac.2024.131442
[55]

Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, et al. 2019. Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology 134:110827

doi: 10.1016/j.fct.2019.110827
[56]

Ovcharenko OO, Rudas VA. 2023. Modern approaches to genetic engineering in the Orchidaceae famil. Cytology and Genetics 57:142−156

doi: 10.3103/S0095452723020093
[57]

Ma L, Haile ZM, Sabbadini S, Mezzetti B, Negrini F, et al. 2023. Functional characterization of MANNOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. Journal of Experimental Botany 74:149−161

doi: 10.1093/jxb/erac396
[58]

Wu B, Qi F, Liang Y. 2023. Fuels for ROS signaling in plant immunity. Trends in Plant Science 28:1124−1131

doi: 10.1016/j.tplants.2023.04.007
[59]

Martinvalet D, Walch M. 2022. Editorial: the role of reactive oxygen species in protective immunity. Frontiers in Immunology 12:832946

doi: 10.3389/fimmu.2021.832946
[60]

Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, et al. 2024. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. Plant Physiology and Biochemistry 206:108238

doi: 10.1016/j.plaphy.2023.108238
[61]

Saleem M, Fariduddin Q, Castroverde CDM. 2021. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry 168:381−397

doi: 10.1016/j.plaphy.2021.10.011
[62]

Roychowdhury R, Hada A, Biswas S, Mishra S, Prusty MR, et al. 2025. Jasmonic acid (JA) in plant immune response: unravelling complex molecular mechanisms and networking of defence signalling against pathogens. Journal of Plant Growth Regulation 44:89−114

doi: 10.1007/s00344-024-11264-4
[63]

Nie P, Li X, Wang S, Guo J, Zhao H, et al. 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Frontiers in Plant Science 8:238

doi: 10.3389/fpls.2017.00238
[64]

Yu Q, He H, Xian B, Zhang C, Zhong X, et al. 2024. The wall-associated receptor-like kinase CsWAKL01, positively regulated by the transcription factor CsWRKY53, confers resistance to citrus bacterial canker via regulation of phytohormone signaling. Journal of Experimental Botany 75:5805−5818

doi: 10.1093/jxb/erae255
[65]

Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, et al. 2009. Early genomic responses to salicylic acid in Arabidopsis. Plant Molecular Biology 70:79−102

doi: 10.1007/s11103-009-9458-1