[1]

Naseri F, Karimi S, Farjah E, Schaltz E. 2022. Supercapacitor management system: a comprehensive review of modeling, estimation, balancing, and protection techniques. Renewable and Sustainable Energy Reviews 155:111913

doi: 10.1016/j.rser.2021.111913
[2]

Sun L, Gong Y, Li D, Pan C. 2022. Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chemistry 24(10):3864−3894

doi: 10.1039/d2gc00099g
[3]

Vercruysse W, Muniz RR, Joos B, Hardy A, Hamed H, et al. 2024. Co-pyrolysis of chicken feathers and macadamia nut shells, a promising strategy to create nitrogen-enriched electrode materials for supercapacitor applications. Bioresource Technology 396:130417

doi: 10.1016/j.biortech.2024.130417
[4]

Liu S, Wei L, Wang H. 2020. Review on reliability of supercapacitors in energy storage applications. Applied Energy 278:115436

doi: 10.1016/j.apenergy.2020.115436
[5]

Duraisamy N, Krishna SK, Dhandapani E, Kandiah K. 2025. A review on biomass-derived activated carbon for next-generation supercapacitors: cutting-edge advances and future prospects. Energy & Fuels 39(5):2306−2347

doi: 10.1021/acs.energyfuels.4c03842
[6]

Fu L, Qu Q, Holze R, Kondratiev VV, Wu Y. 2019. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? Journal of Materials Chemistry A 7:14937−14970

doi: 10.1039/C8TA10587A
[7]

Yan B, Zheng J, Feng L, Du C, Jian S, et al. 2022. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar 4(1):50

doi: 10.1007/s42773-022-00176-9
[8]

Manimekala T, Sivasubramanian R, Dar MA, Dharmalingam G. 2025. Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Advances 15:2490−2522

doi: 10.1039/d4ra07682f
[9]

Shao C, Qiu S, Wu G, Cui B, Chu H, et al. 2021. Rambutan-like hierarchically porous carbon microsphere as electrode material for high-performance supercapacitors. Carbon Energy 3(2):361−374

doi: 10.1002/cey2.81
[10]

Mahmood F, Ali M, Khan M, Mbeugang CFM, Isa YM, et al. 2025. A review of biochar production and its employment in synthesizing carbon-based materials for supercapacitors. Industrial Crops and Products 227:120830

doi: 10.1016/j.indcrop.2025.120830
[11]

Xie C, Lin L, Huang L, Wang Z, Jiang Z, et al. 2021. Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nature Communications 12:4823

doi: 10.1038/s41467-021-25118-0
[12]

Blankenship LS, Mokaya R. 2017. Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy & Environmental Science 10(12):2552−2562

doi: 10.1039/C7EE02616A
[13]

Marinello S, Lolli F, Gamberini R, Rimini B. 2020. A second life for cigarette butts? A review of recycling solutions. Journal of Hazardous Materials 384:121245

doi: 10.1016/j.jhazmat.2019.121245
[14]

Díaz-Mendoza C, Mouthon-Bello J, Botero CM, Villegas JV, Gutiérrez L. 2025. Temporal analysis of cigarette butt accumulation on a touristic beach in Cartagena, Colombia. Environmental Science and Pollution Research 32:19712−19724

doi: 10.1007/s11356-025-36752-2
[15]

Soltani M, Shahsavani A, Hopke PK, Bakhtiarvand NA, Abtahi M, et al. 2025. Investigating the inflammatory effect of microplastics in cigarette butts on peripheral blood mononuclear cells. Scientific Reports 15:458

doi: 10.1038/s41598-024-84784-4
[16]

Luo H, Li T, Qiao Y, Ning Z, Bo C. 2021. Preparation of cigarette butts/coal-based porous carbon and its catalytic methane decomposition to hydrogen. Asia-Pacific Journal of Chemical Engineering 16:e2613

doi: 10.1002/apj.2613
[17]

Zhang X, Xu J, Lv Z, Wang Q, Ge H, et al. 2020. Preparation and utilization of cigarette filters based activated carbon for removal CIP and SDS from aqueous solutions. Chemical Physics Letters 747:137343

doi: 10.1016/j.cplett.2020.137343
[18]

Li J, Liu J, Li C, Luo J, Shen C, et al. 2023. Preparation of discarded cigarette butt-derived activated carbon and its decolorization for waste edible oils. Biomass Conversion and Biorefinery 13(11):10299−10309

doi: 10.1007/s13399-021-01878-z
[19]

Yuan X, Xiao J, Yılmaz M, Zhang TC, Yuan S. 2022. N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Separation and Purification Technology 299:121719

doi: 10.1016/j.seppur.2022.121719
[20]

Bi H, He X, Zhang H, Li H, Xiao N, et al. 2021. N, P Co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renewable Energy 170:188−196

doi: 10.1016/j.renene.2021.01.099
[21]

Gong L, Zeng R, Shi Y, Yu M, Yu X, et al. 2024. Co/P Co-doped bamboo-based woodceramics with a sandwich structure modified by carbon nanotube electrodeposition as supercapacitor electrodes. Bioresource Technology 399:130573

doi: 10.1016/j.biortech.2024.130573
[22]

Liu X, Huang L, Ma Y, She G, Zhou P, et al. 2024. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nature Communications 15:7012

doi: 10.1038/s41467-024-51307-8
[23]

Lobato-Peralta DR, Duque-Brito E, Villafán-Vidales HI, Longoria A, Sebastian PJ, et al. 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. Journal of Cleaner Production 293:126123

doi: 10.1016/j.jclepro.2021.126123
[24]

Chao Y, Chen S, Xiao Y, Hu X, Lu Y, et al. 2021. Ordinary filter paper-derived hierarchical pore structure carbon materials for supercapacitor. Journal of Energy Storage 35:102331

doi: 10.1016/j.est.2021.102331
[25]

Ma ZW, Liu HQ, Lü QF. 2021. Porous biochar derived from tea saponin for supercapacitor electrode: Effect of preparation technique. Journal of Energy Storage 40:102773

doi: 10.1016/j.est.2021.102773
[26]

Guan L, Pan L, Peng T, Gao C, Zhao W, et al. 2019. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 7:8405−8412

doi: 10.1021/acssuschemeng.9b00050
[27]

Wei L, Zheng J, Han Y, Xu X, Li M, et al. 2024. Insights into the roles of biochar pores toward alleviating antibiotic resistance genes accumulation in biofiltration systems. Bioresource Technology 394:130257

doi: 10.1016/j.biortech.2023.130257
[28]

Wu H, Du J, Chen A. 2023. N-doped hollow porous carbon nanotubes derived from in situ activation approach for supercapacitor. Journal of Materials Science 58:5362−5371

doi: 10.1007/s10853-023-08329-2
[29]

Guo J, Guo H, Zhang L, Yang B, Cui J. 2018. Hierarchically porous carbon as a high-rate and long-life electrode material for high-performance supercapacitors. ChemElectroChem 5:770−777

doi: 10.1002/celc.201701286
[30]

Ding Y, Mo LE, Gao C, Liu X, Yu T, et al. 2018. High-surface-area porous carbon flakes derived from boat-fruited sterculia seeds for high-energy-density aqueous symmetric supercapacitors. ACS Sustainable Chemistry & Engineering 6:9822−9830

doi: 10.1021/acssuschemeng.8b00967
[31]

Qin J, Ji R, Sun Q, Li W, Cheng H, et al. 2023. Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole. Bioresource Technology 369:128361

doi: 10.1016/j.biortech.2022.128361
[32]

Ma Q, Xi H, Cui F, Zhang J, Chen P, et al. 2022. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor. Journal of Energy Storage 45:103509

doi: 10.1016/j.est.2021.103509
[33]

Liu X, Chao D, Li Y, Hao J, Liu X, et al. 2015. A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy 17:43−51

doi: 10.1016/j.nanoen.2015.07.029
[34]

Cheng L, Ji Y, Liu X, Mu L, Zhu J. 2021. Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: coupling DFT calculations with experiments. Chemical Engineering Science 242:116739

doi: 10.1016/j.ces.2021.116739
[35]

Bian Z, Wu C, Yuan C, Wang Y, Zhao G, et al. 2020. One-step production of N-O-P-S Co-doped porous carbon from bean worms for supercapacitors with high performance. RSC Advances 10:30756−30766

doi: 10.1039/D0RA05870J
[36]

Khan MS, Jhankal D, Shakya P, Sharma AK, Banerjee MK, et al. 2023. Ultraslim and highly flexible supercapacitor based on chemical vapor deposited nitrogen-doped bernal graphene for wearable electronics. Carbon 208:227−237

doi: 10.1016/j.carbon.2023.03.059
[37]

Lu S, Yang W, Zhou M, Qiu L, Tao B, et al. 2022. Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors. Journal of Colloid and Interface Science 610:1088−1099

doi: 10.1016/j.jcis.2021.11.164
[38]

Zhang X, Sun B, Fan X, Liang P, Zhao G, et al. 2022. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. Fuel 311:122552

doi: 10.1016/j.fuel.2021.122552
[39]

Samage A, Halakarni M, Ghosh D, Nataraj SK. 2022. High power, long cycle life capacitive carbon from Hibiscus cannabinus, a agri-bio-waste with simultaneous value addition in water treatment application. Chemical Engineering Journal 435:134952

doi: 10.1016/j.cej.2022.134952
[40]

Sangtong N, Chaisuwan T, Wongkasemjit S, Ishida H, Redpradit W, et al. 2021. Ultrahigh-surface-area activated biocarbon based on biomass residue as a supercapacitor electrode material: tuning pore structure using alkalis with different atom sizes. Microporous and Mesoporous Materials 326:111383

doi: 10.1016/j.micromeso.2021.111383
[41]

Kasturi PR, Ramasamy H, Meyrick D, Lee YS, Selvan RK. 2019. Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. Journal of Colloid and Interface Science 554:142−156

doi: 10.1016/j.jcis.2019.06.081
[42]

Lang, J, Matějová L, Cuentas-Gallegos AK, Lobato-Peralta DR, Ainassaari K, et al. 2021. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. Journal of Environmental Chemical Engineering 9(5):105979

doi: 10.1016/j.jece.2021.105979
[43]

Lei J, Guo Q, Yao WT, Duan T, Chen P, et al. 2018. Bioconcentration of organic dyes via fungal hyphae and their derived carbon fibers for supercapacitors. Journal of Materials Chemistry A 6:10710−10717

doi: 10.1039/C8TA02655F
[44]

Zhao YQ, Lu M, Tao PY, Zhang YJ, Gong XT, et al. 2016. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources 307:391−400

doi: 10.1016/j.jpowsour.2016.01.020
[45]

Li Z, Liang Q, Yang C, Zhang L, Li B, et al. 2017. Convenient preparation of nitrogen-doped activated carbon from Macadamia nutshell and its application in supercapacitor. Journal of Materials Science: Materials in Electronics 28:13880−13887

doi: 10.1007/s10854-017-7236-4
[46]

Magar SD, Leibing C, Gόmez-Urbano JL, Cid R, Carriazo D, et al. 2023. Brewery waste derived activated carbon for high performance electrochemical capacitors and lithium-ion capacitors. Electrochimica Acta 446:142104

doi: 10.1016/j.electacta.2023.142104
[47]

Song G, Tian Y, Wang J, Zhang S, Hou H, et al. 2025. In situ nitrogen-doped porous carbon from waste baby diapers as a high-performance supercapacitor electrode material. RSC Advances 15:20657−20667

doi: 10.1039/D5RA00450K
[48]

Sandeep A, Ravindra AV. 2024. Highly efficient peanut shell activated carbon via hydrothermal carbonization and chemical activation for energy storage applications. Diamond and Related Materials 146:111158

doi: 10.1016/j.diamond.2024.111158
[49]

Chen Y, Tang Q, Lei Y, Shen C, Chen X. 2024. Direct pyrolysis fabrication of N/O/S self-doping hierarchical porous carbon from Platycladus Orientali leaves for supercapacitor. Diamond and Related Materials 148:111412

doi: 10.1016/j.diamond.2024.111412
[50]

Ou JK, Zhang HW, Lei Y, Li KY, Li B, et al. 2023. Buckwheat core derived nitrogen- and oxygen-rich controlled porous carbon for high-performance supercapacitors. Journal of Central South University 30:419−433

doi: 10.1007/s11771-023-5249-0