[1]

Lentz RD, Ippolito JA, Spokas KA. 2014. Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn. Soil Science Society of America Journal 78:1641−1655

doi: 10.2136/sssaj2014.05.0198
[2]

Amin AEEAZ, Eissa MA. 2017. Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. Journal of Soil Science and Plant Nutrition 17:912−921

doi: 10.4067/S0718-95162017000400006
[3]

Wang X, Liu X, Wang W. 2022. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines project. Journal of Geochemical Exploration 233:106907

doi: 10.1016/j.gexplo.2021.106907
[4]

Ortiz C, Pierotti S, Molina MG, Bosch-Serra ÀD. 2023. Soil fertility and phosphorus leaching in irrigated calcareous soils of the Mediterranean Region. Environmental Monitoring and Assessment 195:1376

doi: 10.1007/s10661-023-11901-7
[5]

Sarker RR, Rashid MH, Islam MA, Jahiruddin M, Islam KR, et al. 2023. Tillage and residue management impact on microbial and nematode abundance under diverse rice-based cropping systems in calcareous and non-calcareous floodplain soils. Journal of Soil Science and Plant Nutrition 23:2138−2151

doi: 10.1007/s42729-023-01168-9
[6]

Zahedifard N, Shahbazi K, Mohammadi MH, Golchin A, Moshiri F, et al. 2024. Soil organic carbon fractions in cultivated calcareous soils. Eurasian Soil Science 57:780−793

doi: 10.1134/S1064229323603220
[7]

Long X, Li J, Liao X, Wang J, Zhang W, et al. 2025. Stable soil biota network enhances soil multifunctionality in agroecosystems. Global Change Biology 31:e70041

doi: 10.1111/gcb.70041
[8]

Chen X, Zhang Z. 2022. An overview on the development of science and ecological hydrology of the earth critical zones in karst area. Carsologica Sinica 41:356−364 (in Chinese)

doi: 10.11932/karst20220303
[9]

Liu X, Li SL, Yue FJ, Zhong J, Qin CQ, et al. 2022. Biogeochemical cycles of karst systems and their response to global change. Carsologica Sinica 41:465−476 (in Chinese)

doi: 10.11932/karst20220313
[10]

Lan T, Huang Y, Song X, Deng O, Zhou W, et al. 2022. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. Environmental Pollution 293:118499

doi: 10.1016/j.envpol.2021.118499
[11]

Zou W, Lang M, Zhang L, Liu B, Chen X. 2022. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil. Science of The Total Environment 811:151402

doi: 10.1016/j.scitotenv.2021.151402
[12]

Zhu T, Zeng S, Qin H, Zhou K, Yang H, et al. 2016. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biology and Biochemistry 97:99−101

doi: 10.1016/j.soilbio.2016.03.001
[13]

Garousi F, Shan Z, Ni K, Yang H, Shan J, et al. 2021. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical karst region. Geoderma 381:114754

doi: 10.1016/j.geoderma.2020.114754
[14]

Li D, Yang Y, Chen H, Xiao K, Song T, et al. 2017. Soil gross nitrogen transformations in typical karst and nonkarst forests, southwest China. Journal of Geophysical Research: Biogeosciences 122:2831−2840

doi: 10.1002/2017JG003850
[15]

Adalibieke W, Cui X, Cai H, You L, Zhou F. 2023. Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data 10:617

doi: 10.1038/s41597-023-02526-z
[16]

Martre P, Dueri S, Guarin JR, Ewert F, Webber H, et al. 2024. Global needs for nitrogen fertilizer to improve wheat yield under climate change. Nature Plants 10:1081−1090

doi: 10.1038/s41477-024-01739-3
[17]

Pramanick B, Choudhary S, Kumar M, Singh SK, Jha RK, et al. 2024. Can site-specific nutrient management improve the productivity and resource use efficiency of climate-resilient finger millet in calcareous soils in India? Heliyon 10:e32774

doi: 10.1016/j.heliyon.2024.e32774
[18]

Rashid M, Hussain Q, Khan KS, Ali Alvi S, Abro SA, et al. 2025. De-ashed-biochar slow-release N fertilizer increased NUE in alkaline calcareous soils under wheat and maize crops. Scientific Reports 15:7748

doi: 10.1038/s41598-025-90651-7
[19]

You L, Ros GH, Chen Y, Zhang F, de Vries W. 2024. Optimized agricultural management reduces global cropland nitrogen losses to air and water. Nature Food 5:995−1004

doi: 10.1038/s43016-024-01076-w
[20]

You L, Ros GH, Chen Y, Shao Q, Young M, et al. 2023. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nature Communications 14:5747

doi: 10.1038/s41467-023-41504-2
[21]

Qayyum MF, Abdullah MA, Rizwan M, Haider G, Ali MA, et al. 2019. Different nitrogen and biochar sources' application in an alkaline calcareous soil improved the maize yield and soil nitrogen retention. Arabian Journal of Geosciences 12:664

doi: 10.1007/s12517-019-4846-6
[22]

Elrys AS, Wang J, Meng L, Zhu Q, El-Sawy MM, et al. 2023. Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention. Nature Food 4:1075−1089

doi: 10.1038/s43016-023-00888-6
[23]

Grandy AS, Daly AB, Bécu T, Cardinael R, Fontaine S, et al. 2024. A microbial framework for nitrogen cycling solutions in agroecosystems. One Earth 7:2103−2107

doi: 10.1016/j.oneear.2024.11.018
[24]

Sheikhi J, Mirsyed Hosseini H, Etesami H, Majidi A. 2024. Biochar versus crop residues: modulating net nitrogen mineralization-immobilization and lowering nitrification in calcareous soils. Journal of Soil Science and Plant Nutrition 24:231−251

doi: 10.1007/s42729-024-01655-7
[25]

Aamer M, Shaaban M, Hassan MU, Huang G, Liu Y, et al. 2020. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of Environmental Management 255:109891

doi: 10.1016/j.jenvman.2019.109891
[26]

Beeckman F, Annetta L, Corrochano-Monsalve M, Beeckman T, Motte H. 2024. Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition. Trends in Microbiology 32:590−601

doi: 10.1016/j.tim.2023.10.009
[27]

Gezahegn A, Selassie YG, Agegnehu G, Addisu S, Mihretie FA, et al. 2025. Synergistic effects of aquatic weed biochar and inorganic fertilizer on soil properties, maize yield, and nitrogen use efficiency on Nitisols of Northwestern Ethiopian Highlands. Journal of Agriculture and Food Research 21:101939

doi: 10.1016/j.jafr.2025.101939
[28]

Saffari N, Hajabbasi MA, Shirani H, Mosaddeghi MR, Mamedov AI. 2020. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. Journal of Environmental Management 261:110190

doi: 10.1016/j.jenvman.2020.110190
[29]

Zhang L, Jing Y, Chen C, Xiang Y, Rezaei Rashti M, et al. 2021. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. Global Change Biology Bioenergy 13:1859−1873

doi: 10.1111/gcbb.12898
[30]

Ullah MS, Malekian R, Randhawa GS, Gill YS, Singh S, et al. 2024. The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—a critical review. Reviews in Environmental Science and Bio/Technology 23:1105−1130

doi: 10.1007/s11157-024-09712-4
[31]

Clough TJ, Condron LM. 2010. Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality 39:1218−1223

doi: 10.2134/jeq2010.0204
[32]

Wang Z, Zong H, Zheng H, Liu G, Chen L, et al. 2015. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138:576−583

doi: 10.1016/j.chemosphere.2015.06.084
[33]

Guo C, Wang H, Zou D, Wang Y, Han X. 2022. A novel amended nitrification inhibitor confers an enhanced suppression role in the nitrification of ammonium in soil. Journal of Soils and Sediments 22:831−843

doi: 10.1007/s11368-021-03118-3
[34]

Tufail MA, Irfan M, Umar W, Wakeel A, Schmitz RA. 2023. Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: meta-analysis of last three decades. Environmental Science and Pollution Research 30:64719−64735

doi: 10.1007/s11356-023-26318-5
[35]

Weiske A, Benckiser G, Herbert T, Ottow J. 2001. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biology and Fertility of Soils 34:109−117

doi: 10.1007/s003740100386
[36]

Ruser R, Schulz R. 2015. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. Journal of Plant Nutrition and Soil Science 178:171−188

doi: 10.1002/jpln.201400251
[37]

Li J, Wang S, Luo J, Zhang L, Wu Z, et al. 2021. Effects of biochar and 3,4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils. Journal of Soils and Sediments 21:1089−1098

doi: 10.1007/s11368-020-02811-z
[38]

Li Z, Xu P, Han Z, Wu J, Bo X, et al. 2023. Effect of biochar and DMPP application alone or in combination on nitrous oxide emissions differed by soil types. Biology and Fertility of Soils 59:123−138

doi: 10.1007/s00374-022-01688-z
[39]

He X, He J, Shen H, Zeng Z, Zhao D, et al. 2025. Co-application of nitrification inhibitors with straw or biochar yielded varying effects on soil nitrification rate, N2O emissions, and ammonia oxidizers. Journal of Soils and Sediments 25:1949−1961

doi: 10.1007/s11368-025-04040-8
[40]

Fu Q, Yan J, Li H, Li T, Hou R, et al. 2019. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles. Geoderma 353:459−467

doi: 10.1016/j.geoderma.2019.07.027
[41]

Hu T, Wei J, Du L, Chen J, Zhang J. 2023. The effect of biochar on nitrogen availability and bacterial community in farmland. Annals of Microbiology 73:4

doi: 10.1186/s13213-022-01708-1
[42]

Abujabhah IS, Doyle R, Bound SA, Bowman JP. 2016. The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. Journal of Soils and Sediments 16:2211−2222

doi: 10.1007/s11368-016-1411-8
[43]

Fuertes-Mendizábal T, Huérfano X, Vega-Mas I, Torralbo F, Menéndez S, et al. 2019. Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions. Scientific Reports 9:2346

doi: 10.1038/s41598-019-38697-2
[44]

Priha O, Smolander A. 1999. Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biology and Biochemistry 31:965−977

doi: 10.1016/S0038-0717(99)00006-1
[45]

Bremner JM, Keeney DR. 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Science Society of America Journal 30:577−582

doi: 10.2136/sssaj1966.03615995003000050015x
[46]

Kirkham D, Bartholomew WV. 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Journal 18:33−34

doi: 10.2136/sssaj1954.03615995001800010009x
[47]

Corre MD, Brumme R, Veldkamp E, Beese FO. 2007. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Global Change Biology 13:1509−1527

doi: 10.1111/j.1365-2486.2007.01371.x
[48]

Li S, Sha Z, Xu B, Gui D, Yang Q. 2025. Nitrification inhibition lowers inorganic carbon-induced CO2 loss and impedes N2O emissions from three calcareous soils. Plant and Soil 2025:1−21

doi: 10.1007/s11104-025-07835-3
[49]

Bachtsevani E, Papazlatani CV, Rousidou C, Lampronikou E, Menkissoglu-Spiroudi U, et al. 2021. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on the activity and diversity of the soil microbial community under contrasting soil pH. Biology and Fertility of Soils 57:1117−1135

doi: 10.1007/s00374-021-01602-z
[50]

Barrena I, Menéndez S, Correa-Galeote D, Vega-Mas I, Bedmar EJ, et al. 2017. Soil water content modulates the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrifying and denitrifying bacteria. Geoderma 303:1−8

doi: 10.1016/j.geoderma.2017.04.022
[51]

Chen H, Yin C, Fan XP, Ye MJ, Peng HY, et al. 2019. Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Science of The Total Environment 694:133658

doi: 10.1016/j.scitotenv.2019.133658
[52]

Guo B, Zheng X, Yu J, Ding H, Luo S, et al. 2022. Liming and nitrification inhibitor affects crop N uptake efficiency and N loss through changing soil N processes. Biology and Fertility of Soils 58:949−959

doi: 10.1007/s00374-022-01674-5
[53]

Keiblinger KM, Zehetner F, Mentler A, Zechmeister-Boltenstern S. 2018. Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research 25:11173−11177

doi: 10.1007/s11356-018-1658-2
[54]

Chagas JKM, Figueiredo CCD, Ramos MLG. 2022. Biochar increases soil carbon pools: evidence from a global meta-analysis. Journal of Environmental Management 305:114403

doi: 10.1016/j.jenvman.2021.114403
[55]

Sánchez-García M, Roig A, Sánchez-Monederoonedero MA, Cayuela ML. 2014. Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Frontiers in Environmental Science 2:25

doi: 10.3389/fenvs.2014.00025
[56]

Wells NS, Baggs EM. 2014. Char amendments impact soil nitrous oxide production during ammonia oxidation. Soil Science Society of America Journal 78:1656−1660

doi: 10.2136/sssaj2013.11.0468n
[57]

Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, et al. 2018. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil 426:211−225

doi: 10.1007/s11104-018-3619-4
[58]

Liu Q, Liu B, Zhang Y, Hu T, Lin Z, et al. 2019. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biology 25:2077−2093

doi: 10.1111/gcb.14613
[59]

Lan T, He X, Wang Q, Deng O, Zhou W, et al. 2022. Synergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat system. Applied Soil Ecology 174:104412

doi: 10.1016/j.apsoil.2022.104412
[60]

Wang J, Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production 227:1002−1022

doi: 10.1016/j.jclepro.2019.04.282
[61]

Marsden KA, Marín-Martínez AJ, Vallejo A, Hill PW, Jones DL, et al. 2016. The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: a comparison between DCD and DMPP. Biology and Fertility of Soils 52:491−503

doi: 10.1007/s00374-016-1092-x
[62]

Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Science of The Total Environment 624:1202−1212

doi: 10.1016/j.scitotenv.2017.12.250
[63]

Sun H, Lu H, Chu L, Shao H, Shi W. 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of The Total Environment 575:820−825

doi: 10.1016/j.scitotenv.2016.09.137
[64]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263−276

doi: 10.1038/nrmicro.2018.9
[65]

Cassman NA, Soares JR, Pijl A, Lourenço KS, Van Veen JA, et al. 2019. Nitrification inhibitors effectively target N2O-producing Nitrosospira spp. in tropical soil. Environmental Microbiology 21:1241−1254

doi: 10.1111/1462-2920.14557
[66]

Han B, Yao Y, Liu B, Wang Y, Su X, et al. 2024. Relative importance between nitrification and denitrification to N2O from a global perspective. Global Change Biology 30:e17082

doi: 10.1111/gcb.17082
[67]

Prosser JI, Hink L, Gubry-Rangin C, Nicol GW. 2020. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology 26:103−118

doi: 10.1111/gcb.14877
[68]

Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, et al. 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry 38:263−274

doi: 10.1016/j.soilbio.2005.05.005
[69]

Elrys AS, Ali A, Zhang H, Cheng Y, Zhang J, et al. 2021. Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology 27:5950−5962

doi: 10.1111/gcb.15851
[70]

Pokharel P, Qi L, Chang SX. 2021. Manure-based biochar decreases heterotrophic respiration and increases gross nitrification rates in rhizosphere soil. Soil Biology and Biochemistry 154:108147

doi: 10.1016/j.soilbio.2021.108147
[71]

Hale L, Hendratna A, Scott N, Gao S. 2023. Biochar enhancement of nitrification processes varies with soil conditions. Science of The Total Environment 887:164146

doi: 10.1016/j.scitotenv.2023.164146
[72]

Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, et al. 2014. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems & Environment 191:5−16

doi: 10.1016/j.agee.2013.10.009
[73]

Surey R, Schimpf CM, Sauheitl L, Mueller CW, Rummel PS, et al. 2020. Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition. Soil Biology and Biochemistry 147:107841

doi: 10.1016/j.soilbio.2020.107841
[74]

Lan T, Li M, He X, Yuan J, Zhou M, et al. 2023. Effects of exogenous carbon and nitrification inhibitors on denitrification rate, product stoichiometry and nirS/nirK-type denitrifiers in a calcareous soil: evidence from 15N anaerobic microcosm assays. Journal of Soils and Sediments 23:1217−1232

doi: 10.1007/s11368-022-03406-6
[75]

Surey R, Lippold E, Heilek S, Sauheitl L, Henjes S, et al. 2020. Differences in labile soil organic matter explain potential denitrification and denitrifying communities in a long-term fertilization experiment. Applied Soil Ecology 153:103630

doi: 10.1016/j.apsoil.2020.103630
[76]

Clough TJ, Condron LM, Kammann C, Müller C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3:275−293

doi: 10.3390/agronomy3020275