[1]

Zhang X, Liu Y, Liu Y, Cui Q, Yang L, et al. 2019. Impacts of climate change on self-sufficiency of rice in China: a CGE-model-based evidence with alternative regional feedback mechanisms. Journal of Cleaner Production 230:150−161

doi: 10.1016/j.jclepro.2019.05.075
[2]

Zhu Z. 1985. Progress in research on soil nitrogen supply and fertilizer nitrogen fate in China. Soils 1:2−9

doi: 10.13758/j.cnki.tr.1985.01.001
[3]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263–276

doi: 10.1038/nrmicro.2018.9
[4]

Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591−602

doi: 10.1890/03-8002
[5]

Stanford G. 1982. Assessment of soil nitrogen availability. In Nitrogen in Agricultural Soils, ed. Stevenson FJ. Volume 22. US: Wiley. pp. 651−688 doi: 10.2134/agronmonogr22.c17

[6]

Elrys AS, Chen Z, Wang J, Uwiragiye Y, Helmy AM, et al. 2022. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Global Change Biology 28:4472−4488

doi: 10.1111/gcb.16202
[7]

Ros GH, Hanegraaf MC, Hoffland E, van Riemsdijk WH. 2011. Predicting soil N mineralization: Relevance of organic matter fractions and soil properties. Soil Biology and Biochemistry 43:1714−1722

doi: 10.1016/j.soilbio.2011.04.017
[8]

Chen X, Zhang F, Römheld V, Horlacher D, Schulz R, et al. 2006. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystems 74:91−98

doi: 10.1007/s10705-005-1701-9
[9]

Cui Z, Zhang F, Chen X, Miao Y, Li J, et al. 2008. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research 105:48−55

doi: 10.1016/j.fcr.2007.07.008
[10]

Yang LL, Zhang FS, Mao RZ, Ju XT, Cai XB, et al. 2008. Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitrification in Tibet. Pedosphere 18:699−706

doi: 10.1016/S1002-0160(08)60065-X
[11]

Waring SA, Bremner JM. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951−952

doi: 10.1038/201951a0
[12]

Li W, Xia Y, Ti C, Yan X. 2011. Evaluation of biological and chemical nitrogen indices for predicting nitrogen-supplying capacity of paddy soils in the Taihu Lake region, China. Biology and Fertility of Soils 47:669−678

doi: 10.1007/s00374-011-0577-x
[13]

Schomberg HH, Wietholter S, Griffin TS, Reeves DW, Cabrera ML, et al. 2009. Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. Soil Science Society of America Journal 73:1575−1586

doi: 10.2136/sssaj2008.0303
[14]

Sahrawat KL. 1998. Short-term incubation method for mineralizable nitrogen. Arid Soil Research and Rehabilitation 12:291−295

doi: 10.1080/15324989809381517
[15]

Mariano E, Trivelin PCO, Leite JM, Megda MXV, Otto R, Franco HCJ. 2013. Incubation methods for assessing mineralizable nitrogen in soils under sugarcane. Revista Brasileira De Ciencia Do Solo 37:450−461

doi: 10.1590/s0100-06832013000200016
[16]

Curtin D, Beare MH, Lehto K, Tregurtha C, Qiu W, et al. 2017. Rapid assays to predict nitrogen mineralization capacity of agricultural soils. Soil Science Society of America Journal 81:979−991

doi: 10.2136/sssaj2016.08.0265
[17]

Houba VJG, Novozamsky I, Huybregts AWM, van der Lee JJ. 1986. Comparison of soil extractions by 0.01M CaCl2, by EUF and by some conventional extraction procedures. Plant and Soil 96:433−437

doi: 10.1007/BF02375149
[18]

Li H, Han Y, Cai Z. 2003. Nitrogen mineralization in paddy soils of the Taihu Region of China under anaerobic conditions: dynamics and model fitting. Geoderma 115:161−175

doi: 10.1016/S0016-7061(02)00358-0
[19]

Li H, Han Y, Roelcke M, Cai Z. 2008. Net nitrogen mineralization in typical paddy soils of the Taihu Region of China under aerobic conditions: dynamics and model fitting. Canadian Journal of Soil Science 88:719−731

doi: 10.4141/CJSS07036
[20]

Gao J, Fang S, Zhang Y, An J, Yu N, et al. 2022. Characteristics of organic nitrogen mineralization in paddy soil with different reclamation years in black soil of Northeast China. Scientia Agricultura Sinica 55:1579−1588 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.08.009
[21]

Kader MA, Sleutel S, Begum SA, Moslehuddin AZM, De neve S. 2013. Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents. European Journal of Soil Science 64:47−57

doi: 10.1111/ejss.12005
[22]

Soinne H, Keskinen R, Räty M, Kanerva S, Turtola E, et al. 2021. Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. European Journal of Soil Science 72:1497−1512

doi: 10.1111/ejss.13003
[23]

Gao S, Liu Z, Wang Y, Tao W, Wang Z, et al. 2025. Optimizing rice productivity using controlled-release blended fertilizers in the Yangtze River Delta of China. The Crop Journal 13:1898−1907

doi: 10.1016/j.cj.2025.09.012
[24]

Hou D, Chen J, Dong J, Ji C, Feng J, et al. 2025. A 30-m annual paddy rice dataset in Northeastern China during period 2000–2023. Scientific Data 12:1355

doi: 10.1038/s41597-025-05715-0
[25]

Huang J, Liu LS, Ma CB, Xue YD, Han TF, et al. 2020. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years. Journal of Plant Nutrition and Fertilizers 26:987−998 (in Chinese)

doi: 10.11674/zwyf.19410
[26]

Zhang Y, Xu W, Duan P, Cong Y, An T, et al. 2017. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation. PLoS One 12:e0171022

doi: 10.1371/journal.pone.0171022
[27]

Zhao X, Cai S, Yang B, Zhao H, Zeng K, et al. 2023. Soil nitrogen dynamics drive regional variation in nitrogen use efficiency in rice: a multi-scale study. European Journal of Soil Science 74:e13352

doi: 10.1111/ejss.13352
[28]

Gaskin JW, Steiner C, Harris KC, Das K, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51:2061−2069

doi: 10.13031/2013.25409
[29]

Lu R. 2000. Methods of Soil and Agro-chemical Analysis. Beijing, China: China Agricultural Scientech Technology Press (in Chinese)

[30]

Qian C, Cai Z. 2007. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations. Plant and Soil 300:197−205

doi: 10.1007/s11104-007-9404-4
[31]

Manguiat IJ, Watanabe I, Mascariña GB, Tallada JG. 1996. Nitrogen mineralization in tropical wetland rice soils. I. Relationship with temperature and soil properties. Soil Science and Plant Nutrition 42:229−238

doi: 10.1080/00380768.1996.10415093
[32]

Stanford G, Smith SJ. 1972. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal 36:465−472

doi: 10.2136/sssaj1972.03615995003600030029x
[33]

Fox RH, Piekielek WP. 1978. A rapid method for estimating the nitrogen-supplying capability of a soil. Soil Science Society of America Journal 42:751−753

doi: 10.2136/sssaj1978.03615995004200050019x
[34]

Hong SD, Fox RH, Piekielek WP. 1990. Field evaluation of several chemical indexes of soil nitrogen availability. Plant and Soil 123:83−88

doi: 10.1007/BF00009929
[35]

Nunan N, Morgan M, Brennan D, Herlihy M. 2001. Organic matter extracted with 0.01 M CaCl2 or with 0.01 M NaHCO3 as indices of N mineralisation and microbial biomass. Biology and Fertility of Soils 34:433−440

doi: 10.1007/s00374-001-0427-3
[36]

Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, et al. 2012. Closing yield gaps through nutrient and water management. Nature 490:254−257

doi: 10.1038/nature11420
[37]

Gillis JD, Price GW. 2016. Linking short-term soil carbon and nitrogen dynamics: Environmental and stoichiometric controls on fresh organic matter decomposition in agroecosystems. Geoderma 274:35−44

doi: 10.1016/j.geoderma.2016.03.026
[38]

Lefcheck JS. 2016. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573−579

doi: 10.1111/2041-210x.12512
[39]

Yang B, Cai S, Liu Y, Xu L, Wang Y, et al. 2021. Soil nitrogen supply and retention capacity determine the effect and utilization rate of nitrogen fertilizer in paddy field. Acta Pedologica Sinica 60:212−223 (in Chinese)

doi: 10.11766/trxb202104070181
[40]

McDonald NT, Watson CJ, Lalor STJ, Laughlin RJ, Wall DP. 2014. Evaluation of soil tests for predicting nitrogen mineralization in temperate grassland soils. Soil Science Society of America Journal 78:1051−1064

doi: 10.2136/sssaj2013.09.0411
[41]

Shepherd M, Ghani A, Rajendram G, Carlson B, Pirie M. 2015. Soil total nitrogen concentration explains variation in pasture response to spring nitrogen fertiliser across a single farm. Nutrient Cycling in Agroecosystems 101:377−390

doi: 10.1007/s10705-015-9686-5
[42]

Li M, Li X, Shi Y, Jiang Y, Xue R, et al. 2024. Soil enzyme activity mediated organic carbon mineralization due to soil erosion in long gentle sloping farmland in the black soil region. Science of The Total Environment 929:172417

doi: 10.1016/j.scitotenv.2024.172417
[43]

Wu J, Brookes PC. 2005. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology and Biochemistry 37:507−515

doi: 10.1016/j.soilbio.2004.07.043
[44]

Sano S, Yanai J, Kosaki T. 2006. Relationships between labile organic matter and nitrogen mineralization in Japanese agricultural soils with reference to land use and soil type. Soil Science and Plant Nutrition 52:49−60

doi: 10.1111/j.1747-0765.2006.00003.x
[45]

Amorim HCS, Araujo MA, Lal R, Zinn YL. 2023. What C: N ratios in soil particle-size fractions really say: N is preferentially sorbed by clays over organic C. CATENA 230:107230

doi: 10.1016/j.catena.2023.107230
[46]

Bucka FB, Felde VJMNL, Peth S, Kögel-Knabner I. 2024. Complementary effects of sorption and biochemical processing of dissolved organic matter for emerging structure formation controlled by soil texture. Journal of Plant Nutrition and Soil Science 187:51−62

doi: 10.1002/jpln.202200391
[47]

Chen T, Yang S. 1990. A rapid method for determining soil available nitrogen. Soil Fertilizer 4:45−47 (in Chinese)

[48]

Chen S, Elrys AS, Yang W, Du S, He M, et al. 2024. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. Global Change Biology 30:e17290

doi: 10.1111/gcb.17290
[49]

Elrys AS, Zhang J, Meng L, Nardi P, Müller C. 2025. Clay-to-carbon ratio: an overlooked but pivotal mediator of soil nitrogen mineralization and availability. Soil and Tillage Research 251:106533

doi: 10.1016/j.still.2025.106533
[50]

Li D, Li Y, Yao S, Zhou H, Huang S, et al. 2024. Dynamics of nitrogen mineralization and nitrogen cycling functional genes in response to soil pore size distribution. European Journal of Soil Biology 123:103692

doi: 10.1016/j.ejsobi.2024.103692
[51]

Xue S, Xu S, Kou W, Han J, Fan T, et al. 2023. Carbon and nitrogen fractions are more important than bacterial composition for carbon and nitrogen mineralization considering parent material and fertilization. European Journal of Soil Biology 119:103563

doi: 10.1016/j.ejsobi.2023.103563
[52]

Xu S, Zhao Y, Shi X, Yu D, Li C, et al. 2013. Map scale effects of soil databases on modeling organic carbon dynamics for paddy soils of China. CATENA 104:67−76

doi: 10.1016/j.catena.2012.10.017
[53]

Broeg T, Blaschek M, Seitz S, Taghizadeh-Mehrjardi R, Zepp S, et al. 2023. Transferability of covariates to predict soil organic carbon in cropland soils. Remote Sensing 15:876

doi: 10.3390/rs15040876
[54]

Sun S, Liu J, Chang SX. 2013. Temperature sensitivity of soil carbon and nitrogen mineralization: impacts of nitrogen species and land use type. Plant and Soil 372:597−608

doi: 10.1007/s11104-013-1758-1
[55]

Ju X, Xing G, Chen X, Zhang S, Zhang L, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America 106:3041−3046

doi: 10.1073/pnas.0813417106
[56]

Song D, Jiang R, Fan D, Zou G, Du L, et al. 2022. Evaluation of nitrogen fertilizer fates and related environmental risks for main cereals in China's croplands from 2004 to 2018. Plants 11:2507

doi: 10.3390/plants11192507
[57]

Cao X, Qin B, Ma Q, Zhu L, Zhu C, et al. 2023. Predicting the nitrogen quota application rate in a double rice cropping system based on rice–soil nitrogen balance and 15N labelling analysis. Agriculture 13:612

doi: 10.3390/agriculture13030612
[58]

Cui Z, Zhang H, Chen X, Zhang C, Ma W, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363−366

doi: 10.1038/nature25785