[1]

Lim LT. 2025. Diversity, Traditional knowledge, and historical perspectives on wild Cordyceps. In Cordyceps and Allied Species, eds. Deshmukh SK, Sridhar KR. Singapore: Springer Nature Singapore. pp. 63−83 doi: 10.1007/978-981-97-6345-0_3

[2]

Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, et al. 2024. The 2024 outline of fungi and fungus-like taxa. Mycosphere 15:5146−6239

doi: 10.5943/mycosphere/15/1/25
[3]

Bhatia I, Oleksak M. 2025. Applying Cordyceps militaris biopesticide to reduce Brevicoryne brassicae infestation of Brassica oleracea crops. Sydowia 77:69−80

doi: 10.12905/0380.sydowia77-2025-0069
[4]

Hasnain M, Jamsheed RA, Hussain Z, Latif R. 2023. A comparative study on Cordyceps militaris and Ophiocordyceps sinensis. International Journal of Natural Medicine and Health Sciences 2:1−6

[5]

Shweta, Abdullah S, Komal, Kumar A. 2023. A brief review on the medicinal uses of Cordyceps militaris. Pharmacological Research – Modern Chinese Medicine 7:100228

doi: 10.1016/j.prmcm.2023.100228
[6]

Lam DM, Van NTT. 2025. Secondary metabolites and potential applications of Cordyceps and allies. In Cordyceps and Allied Species, eds. Deshmukh SK, Sridhar KR. Singapore: Springer Nature Singapore. pp. 119−163 doi: 10.1007/978-981-97-6345-0_6

[7]

Saranya S, Priya J. 2021. Cordyceps militaris: an emerging biological tool in crop protection. In Agricultural Innovations and Sustainability, ed. Shekhawat GS. Jodhpur, India: Agrobios Research: An Imprint of Agrobios. pp. 203−214

[8]

Khan Y, Sadia H, Ali Shah SZ, Khan MN, Ali Shah A, et al. 2022. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12:1386

doi: 10.3390/catal12111386
[9]

Stark WJ, Stoessel PR, Wohlleben W, Hafner A. 2015. Industrial applications of nanoparticles. Chemical Society Reviews 44:5793−5805

doi: 10.1039/C4CS00362D
[10]

Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. 2023. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research 25:43

doi: 10.1007/s11051-023-05690-w
[11]

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, et al. 2018. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology 16:84

doi: 10.1186/s12951-018-0408-4
[12]

Joshi H. 2025. Exploring the efficacy of green nanoparticles in enhancing plant defense: a mechanistic investigation into immune response activation. Journal of Nanoparticle Research 27:29

doi: 10.1007/s11051-025-06226-0
[13]

Chugh D, Viswamalya VS, Das B. 2021. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology 19:126

doi: 10.1186/s43141-021-00228-w
[14]

Wang L, Liu CC, Wang YY, Xu H, Su H, et al. 2016. Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Current Applied Physics 16:969−973

doi: 10.1016/j.cap.2016.05.025
[15]

Dias C, Ayyanar M, Amalraj S, Khanal P, Subramaniyan V, et al. 2022. Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: characterization and mechanistic insights of therapeutic investigation. Journal of Drug Delivery Science and Technology 73:103444

doi: 10.1016/j.jddst.2022.103444
[16]

Linné Cv, Salvius L. 1753. Caroli Linnaei … Species Plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae, Stockholm: Laurentii Salvii.

[17]

Linnaeus C. 1799. Species Plantarum. Vol. 3. Impensis G. C. Nauk

[18]

Persoon CH. 1796. Observationes mycologicae: seu descriptiones tam novorum, quam notabilium fungorum. Lipsiae: Petrum Phillippum Wolf.

[19]

Fries EM. 1823. Systema Mycologicum: sistens fungorum ordines, genera et species huc usque cognitas, quas ad normam methodi naturalis determinavit. Vol. II. Lundæ: Ex Officina Berlingiana

[20]

Link JH F. 1833. Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse. Vol. 3. Berlin: Haude & Spener

[21]

Berkeley MJ. 1857. On some entomogenous sphaeriae. Botanical Journal of the Linnean Society 1:157−159

doi: 10.1111/j.1095-8339.1857.tb02440.x
[22]

Tulasne LR, Tulasne C, Grove WB. 1931. Selecta fungorum carpologia: of the brothers L R and C Tulasne, eds. Buller AHR, Shear CL. Oxford, UK: The Clarendon Press.

[23]

Saccardo PA. 1883. Cordyceps. Sylloge Fungorum omnium hucusque cognitorum 2:566−578

[24]

Massee G. 1895. A revision of the genus Cordyceps. Annals of Botany os−99:1−44

doi: 10.1093/oxfordjournals.aob.a090724
[25]

Pathania P, Joshi M, Sugar A. 2015. Morphological physiological and molecular studies on wildly collected Cordyceps militaris from North West Himalaya India. European Journal of Biotechnology and Bioscience 3:53−62

[26]

Park HJ. 2025. Influence of culture conditions on bioactive compounds in Cordyceps militaris: a comprehensive review. Foods 14:3408

doi: 10.3390/foods14193408
[27]

Rao YK, Fang SH, Wu WS, Tzeng YM. 2010. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediators' production and human cancer cell proliferation. Journal of Ethnopharmacology 131:363−367

doi: 10.1016/j.jep.2010.07.020
[28]

Kaewkod T, Ngamsaoad P, Mayer KO, Cheepchirasuk N, Promputtha I, et al. 2024. Antioxidant, antibacteria, and anti-inflammatory effects of Cordyceps militaris extracts and their bioactive compounds. Journal of Food Biochemistry 2024:1862818

doi: 10.1155/jfbc/1862818
[29]

Guieu R, Deharo JC, Maille B, Crotti L, Torresani E, et al. 2020. Adenosine and the cardiovascular system: the good and the bad. Journal of Clinical Medicine 9:1366

doi: 10.3390/jcm9051366
[30]

Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-dos-Santos F, Santos ARS. 2021. Inosine as a tool to understand and treat central nervous system disorders: a neglected actor? Frontiers in Neuroscience 15:703783

doi: 10.3389/fnins.2021.703783
[31]

Barkas F, Bathrellou E, Nomikos T, Panagiotakos D, Liberopoulos E, et al. 2023. Plant sterols and plant stanols in cholesterol management and cardiovascular prevention. Nutrients 15:2845

doi: 10.3390/nu15132845
[32]

Zhu L, Wang J, Tang Q, Liu Y. 2024. Structural elucidation and anti-tumor activity of a polysaccharide (CP2-S) from Cordyceps militaris fruit bodies. Polymers 16:1972

doi: 10.3390/polym16141972
[33]

Hafeez A. 2022. Metabolic investigation and activity of Cordyceps militaris and cordycepin in cancer cell lines Doctoral dissertation. University of Nottingham, Nottingham, UK.

[34]

Wong JH, Ng TB, Wang H, Sze SCW, Zhang KY, et al. 2011. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18:387−392

doi: 10.1016/j.phymed.2010.07.010
[35]

Pintathong P, Chomnunti P, Sangthong S, Jirarat A, Chaiwut P. 2021. The feasibility of utilizing cultured Cordyceps militaris residues in cosmetics: biological activity assessment of their crude extracts. Journal of Fungi 7:973

doi: 10.3390/jof7110973
[36]

Jędrejko KJ, Lazur J, Muszyńska B. 2021. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity. Foods 10:2634

doi: 10.3390/foods10112634
[37]

Khan MA, Tania M. 2020. Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Current Medicinal Chemistry 27:983−996

doi: 10.2174/0929867325666181001105749
[38]

Phull AR, Ahmed M, Park HJ. 2022. Cordyceps militaris as a biofunctional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms 10:405

doi: 10.3390/microorganisms10020405
[39]

Tan L, Song X, Ren Y, Wang M, Guo C, et al. 2021. Anti-inflammatory effects of cordycepin: a review. Phytotherapy Research 35:1284−1297

doi: 10.1002/ptr.6890
[40]

Baig MH, Turk A, Vishwakarma P, Jo YS, Dong JJ, et al. 2025. Exploring the therapeutic potential of Cordyceps mushroom on SARS-CoV-2 using virtual screening against Mpro and in vitro validation of cordycepin. Journal of Microbiology and Biotechnology 35:e2411063

doi: 10.4014/jmb.2411.11063
[41]

Liu W, Dun M, Liu X, Zhang G, Ling J. 2022. Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris. International Journal of Food Properties 25:477−491

doi: 10.1080/10942912.2022.2048009
[42]

Chou YC, Sung TH, Hou SJ, Khumsupan D, Santoso SP, et al. 2024. Current progress regarding Cordyceps militaris, its metabolite function, and its production. Applied Sciences 14:4610

doi: 10.3390/app14114610
[43]

Hu T, Liang Y, Zhao G, Wu W, Li H, et al. 2019. Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biological Trace Element Research 187:553−561

doi: 10.1007/s12011-018-1386-y
[44]

Mehra A, Zaidi KU, Mani A, Thawani V. 2017. The health benefits of Cordyceps militaris − a review. Kavaka 48:27−32

[45]

Fan HB, Zheng QW, Han Q, Zou Y, Liu YL, et al. 2021. Effect and mechanism of a novel Cordyceps militaris immunomodulatory protein on the differentiation of macrophages. Food Bioscience 43:101268

doi: 10.1016/j.fbio.2021.101268
[46]

Zhang J, Zhang W, Yin Z, Li C, Kang W. 2018. Procoagulant constituents from Cordyceps militaris. Food Science and Human Wellness 7:282−286

doi: 10.1016/j.fshw.2018.11.001
[47]

Jo E, Jang HJ, Shen L, Yang KE, Jang MS, et al. 2020. Cordyceps militaris exerts anticancer effect on non-small cell lung cancer by inhibiting hedgehog signaling via suppression of TCTN3. Integrative Cancer Therapies 19:1534735420923756

doi: 10.1177/1534735420923756
[48]

Guo Y, Wei Y, Liu C, Li H, Du X, et al. 2024. Elucidation of antioxidant activities of intracellular and extracellular polysaccharides from Cordyceps militaris in vitro and their protective effects on ulcerative colitis in vivo. International Journal of Biological Macromolecules 267:131385

doi: 10.1016/j.ijbiomac.2024.131385
[49]

Bi S, Jing Y, Zhou Q, Hu X, Zhu J, et al. 2018. Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food & Function 9:279−293

doi: 10.1039/c7fo01147d
[50]

Xu YF. 2016. Effect of polysaccharide from Cordyceps militaris (Ascomycetes) on physical fatigue induced by forced swimming. International Journal of Medicinal Mushrooms 18:1083−1092

doi: 10.1615/IntJMedMushrooms.v18.i12.30
[51]

Holbein S, Wengi A, Decourty L, Freimoser FM, Jacquier A, et al. 2009. Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15:837−849

doi: 10.1261/rna.1458909
[52]

Wang Y, Mo H, Gu J, Chen K, Han Z, et al. 2017. Cordycepin induces apoptosis of human acute monocytic leukemia cells via downregulation of the ERK/Akt signaling pathway. Experimental and Therapeutic Medicine 14:3067−3073

doi: 10.3892/etm.2017.4855
[53]

Songprakhon P, Panya A, Choomee K, Limjindaporn T, Noisakran S, et al. 2024. Cordycepin exhibits both antiviral and anti-inflammatory effects against dengue virus infection. iScience 27:110873

doi: 10.1016/j.isci.2024.110711
[54]

Lee YP, Yu CK, Wong TW, Chen LC, Huang BM. 2024. Cordycepin inhibits Enterovirus A71 replication and protects host cell from virus-induced cytotoxicity through adenosine action pathway. Viruses 16:352

doi: 10.3390/v16030352
[55]

Sevindik M, Bal C, Eraslan EC, Uysal İ, Mohammed FS. 2023. Medicinal mushrooms: a comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences 21:42−56

doi: 10.56782/pps.141
[56]

Ryu E, Son M, Lee M, Lee K, Cho JY, et al. 2014. Cordycepin is a novel chemical suppressor of Epstein–Barr virus replication. Oncoscience 1:866−881

doi: 10.18632/oncoscience.110
[57]

Lee HH, Park H, Sung GH, Lee K, Lee T, et al. 2014. Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. Journal of Microbiology 52:696−701

doi: 10.1007/s12275-014-4300-0
[58]

Zhang Y, Zhang G, Ling J. 2022. Medicinal fungi with antiviral effect. Molecules 27:4457

doi: 10.3390/molecules27144457
[59]

Verma AK, Aggarwal R. 2021. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chemical Biology & Drug Design 97:836−853

doi: 10.1111/cbdd.13812
[60]

Bibi S, Hasan MM, Wang YB, Papadakos SP, Yu H. 2022. Cordycepin as a promising inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Current Medicinal Chemistry 29:152−162

doi: 10.2174/0929867328666210820114025
[61]

Shrestha B, Zhang W, Zhang Y, Liu X. 2012. The medicinal fungus Cordyceps militaris: research and development. Mycological Progress 11:599−614

doi: 10.1007/s11557-012-0825-y
[62]

Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry 12:908−931

doi: 10.1016/j.arabjc.2017.05.011
[63]

Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, et al. 2022. Green synthesis of metal-based nanoparticles for sustainable agriculture. Environmental Pollution 309:119755

doi: 10.1016/j.envpol.2022.119755
[64]

Mohanta YK, Singdevsachan SK, Parida UK, Panda SK, Mohanta TK, et al. 2016. Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnology 10:184−189

doi: 10.1049/iet-nbt.2015.0059
[65]

Quy TN, Xuan TD, Andriana Y, Tran HD, Khanh TD, et al. 2019. Cordycepin isolated from Cordyceps militaris: its newly discovered herbicidal property and potential plant-based novel alternative to glyphosate. Molecules 24:2901

doi: 10.3390/molecules24162901
[66]

Gaurav H, Yadav D, Pandey R, Kumar P, Shukla AC. 2025. Antifungal efficacy of Cordyceps militaris-Mycometabolites against major fungal diseases of Withania somnifera. Journal of Basic Microbiology 65:e70037

doi: 10.1002/jobm.70037
[67]

Gawas G, Ayyanar M, Gurav N, Hase D, Murade V, et al. 2023. Process optimization for the bioinspired synthesis of gold nanoparticles using Cordyceps militaris, its characterization, and assessment of enhanced therapeutic efficacy. Pharmaceuticals 16:1311

doi: 10.3390/ph16091311
[68]

Parameswari BD, Rajakumar M, Hariharan A, Kumar S, Mohamed K, et al. 2024. Green synthesis of Ganoderma lucidum-mediated silver nanoparticles and its microbial activity against oral pathogenic microbes: an in vitro study. Journal of Pharmacy & Bioallied Sciences 16:S1456−S1460

doi: 10.4103/jpbs.jpbs_933_23
[69]

Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran LP. 2019. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arabian Journal of Chemistry 12:1108−1120

doi: 10.1016/j.arabjc.2017.12.002
[70]

Amr M, Abu-Hussien SH, Ismail R, Aboubakr A, Wael R, et al. 2023. Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: synthesis, characterization, antimicrobial efficacy, and toxicological assessment. Scientific Reports 13:15048

doi: 10.1038/s41598-023-42103-3
[71]

Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, et al. 2025. Termitomyces mushroom extract-mediated synthesis of silver nanoparticles and its in vitro activity against drug-resistant Candida species. Current Research in Biotechnology 9:100279

doi: 10.1016/j.crbiot.2025.100279
[72]

Woolley VC, Teakle GR, Prince G, de Moor CH, Chandler D. 2020. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. Journal of Invertebrate Pathology 177:107480

doi: 10.1016/j.jip.2020.107480
[73]

Kryukov VY, Yaroslavtseva ON, Surina EV, Tyurin MV, Dubovskiy IM, et al. 2015. Immune reactions of the greater wax moth, Galleria mellonella L. (Lepidoptera, Pyralidae) larvae under combined treatment of the entomopathogens Cordyceps militaris (L.: Fr.) Link and Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota, Hypocreales). Entomological Review 95:693−698

doi: 10.1134/S0013873815060020
[74]

Protection P. 2024. Crop protection potential of entomopathogenic Cordyceps. In Advances in Cordyceps Research, eds. Sridhar K, Deshmukh SK, Fung SY, Mahadevakumar S. Boca Raton, USA: CRC Press. pp. 279−295 doi: 10.1201/9781003466420-18

[75]

Kryukov VY, Yaroslavtseva ON, Dubovskiy IM, Tyurin MV, Kryukova NA, et al. 2014. Insecticidal and immunosuppressive effect of ascomycete Cordyceps militaris on the larvae of the Colorado potato beetle Leptinotarsa decemlineata. Biology Bulletin 41:276−283

doi: 10.1134/S1062359014020046
[76]

Yang NN, Ma QY, Yang L, Xie QY, Dai HF, et al. 2024. A new macrolide from the strain Cordyceps spp. from cell fusion between Cordyceps militaris and Cordyceps cicadae. Chemistry of Natural Compounds 60:61−64

doi: 10.1007/s10600-024-04254-1