[1]

Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, et al. 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56:207−250

doi: 10.1002/2017rg000559
[2]

Allen MR, Fuglestvedt JS, Shine KP, Reisinger A, Pierrehumbert RT, et al. 2016. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nature Climate Change 6:773−776

doi: 10.1038/nclimate2998
[3]

Wu K, Zhou L, Tahon G, Liu L, Li J, et al. 2024. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature 632:1124−1130

doi: 10.1038/s41586-024-07728-y
[4]

Wang S, Liu Q, Li J, Wang Z. 2021. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. Water Research 198:117122

doi: 10.1016/j.watres.2021.117122
[5]

Lin Q, Li L, De Vrieze J, Li C, Fang X, et al. 2023. Functional conservation of microbial communities determines composition predictability in anaerobic digestion. The ISME Journal 17:1920−1930

doi: 10.1038/s41396-023-01505-x
[6]

Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. 2020. Cable bacteria reduce methane emissions from rice-vegetated soils. Nature Communications 11:1878

doi: 10.1038/s41467-020-15812-w
[7]

Wang S, Wu S, Dong Y, Li X, Wang Y, et al. 2024. River-lake ecosystems exhibit a strong seasonal cycle of greenhouse gas emissions. Communications Earth & Environment 5:784

doi: 10.1038/s43247-024-01912-8
[8]

Lyu Z, Shao N, Akinyemi T, Whitman WB. 2018. Methanogenesis. Current Biology 28:R727−R732

doi: 10.1016/j.cub.2018.05.021
[9]

Karwautz C, Kus G, Stöckl M, Neu TR, Lueders T. 2018. Microbial megacities fueled by methane oxidation in a mineral spring cave. The ISME Journal 12:87−100

doi: 10.1038/ismej.2017.146
[10]

He R, Wang J, Pohlman JW, Jia Z, Chu YX, et al. 2022. Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments. The ISME Journal 16:78−90

doi: 10.1038/s41396-021-01049-y
[11]

Shen LD, Wu HS, Liu X, Li J. 2017. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments. Water Research 123:162−172

doi: 10.1016/j.watres.2017.06.075
[12]

Changey F, Aissaoui G, Plain C, Ranger J, Legout A, et al. 2023. Prolonged effect of forest soil compaction on methanogen and methanotroph seasonal dynamics. Microbial Ecology 86:1447−1452

doi: 10.1007/s00248-022-02149-8
[13]

Ding C, Liu Y, Dumont MG, Pan H, Zhao K, et al. 2024. Mean annual precipitation modulates the assembly of high-affinity methanotroph communities and methane oxidation activity across grasslands. Agriculture, Ecosystems & Environment 360:108796

doi: 10.1016/j.agee.2023.108796
[14]

Huang HM, Xue ZX, Jiang YF, Li R, Guo RB, et al. 2024. New approach for raw biogas: production of single cell protein by sulfide-tolerant methane-oxidizing bacteria consortia. Chemical Engineering Journal 495:153678

doi: 10.1016/j.cej.2024.153678
[15]

Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, et al. 2021. Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in Microbiology 12:678057

doi: 10.3389/fmicb.2021.678057
[16]

Meruvu H, Wu H, Jiao Z, Wang L, Fei Q. 2020. From nature to nurture: essence and methods to isolate robust methanotrophic bacteria. Synthetic and Systems Biotechnology 5:173−178

doi: 10.1016/j.synbio.2020.06.007
[17]

Sakshi, Kumar R, Kaur H, Kumar D, Chauhan S. 2023. Microbial endophytes: a novel approach for emerging pollutants. In Management and Mitigation of Emerging Pollutants, eds George N, Dwibedi V, Rath SK, Chauhan PS. Cham: Springer. pp. 249–272 doi: 10.1007/978-3-031-41005-5_9

[18]

Choi M, Yun T, Song MJ, Kim J, Lee BH, et al. 2021. Cometabolic vinyl chloride degradation at acidic pH catalyzed by acidophilic methanotrophs isolated from alpine peat bogs. Environmental Science & Technology 55:5959−5969

doi: 10.1021/acs.est.0c08766
[19]

Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, et al. 2017. Methylmercury uptake and degradation by methanotrophs. Science Advances 3:e1700041

doi: 10.1126/sciadv.1700041
[20]

Liu Y, Ngo HH, Guo W, Sun J, Wang D, et al. 2017. Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs. Journal of Hazardous Materials 332:97−103

doi: 10.1016/j.jhazmat.2017.03.003
[21]

Chiemchaisri W, Chiemchaisri C, Muenmee S. 2024. Biodegradation of plastic wastes under semi-aerobic condition with active methane oxidation activities and nutrient supply. Case Studies in Chemical and Environmental Engineering 10:100809

doi: 10.1016/j.cscee.2024.100809
[22]

Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, et al. 2023. Methane-oxidizing activity enhances sulfamethoxazole biotransformation in a benthic constructed wetland biomat. Environmental Science & Technology 57:7240−7253

doi: 10.1021/acs.est.2c09314
[23]

Tsopelakou AM, Stallard J, Archibald AT, Fitzgerald S, Boies AM. 2024. Exploring the bounds of methane catalysis in the context of atmospheric methane removal. Environmental Research Letters 19:054020

doi: 10.1088/1748-9326/ad383f
[24]

Xu ZC, Park ED. 2022. Gas-phase selective oxidation of methane into methane oxygenates. Catalysts 12:314

doi: 10.3390/catal12030314
[25]

Nisbet-Jones PBR, Fernandez JM, Fisher RE, France JL, Lowry D, et al. 2022. Is the destruction or removal of atmospheric methane a worthwhile option? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380:20210108

doi: 10.1098/rsta.2021.0108
[26]

Wang P, Shi B, Li N, Kang R, Li Y, et al. 2023. CCUS development in China and forecast its contribution to emission reduction. Scientific Reports 13:17811

doi: 10.1038/s41598-023-44893-y
[27]

Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Ramírez EG, et al. 2016. NC10 bacteria in marine oxygen minimum zones. The ISME Journal 10:2067−2071

doi: 10.1038/ismej.2015.262
[28]

Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, et al. 2018. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. The ISME Journal 12:31−47

doi: 10.1038/ismej.2017.140
[29]

Kalyuzhnaya MG, Gomez OA, Murrell JC. 2019. The methane-oxidizing bacteria (methanotrophs). In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, ed. McGenity TJ. Cham: Springer. pp. 1–34 doi: 10.1007/978-3-319-60053-6_10-1

[30]

Xia F, Jiang QY, Zhu T, Zou B, Liu H, et al. 2021. Ammonium promoting methane oxidation by stimulating the Type Ia methane-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary. Science of The Total Environment 793:148470

doi: 10.1016/j.scitotenv.2021.148470
[31]

Crevecoeur S, Ruiz-González C, Prairie YT, Del Giorgio PA. 2019. Large-scale biogeography and environmental regulation of methanotrophic bacteria across boreal inland waters. Molecular Ecology 28:4181−4196

doi: 10.1111/mec.15223
[32]

Park SY, Kim CG. 2019. Application and development of methanotrophs in environmental engineering. Journal of Material Cycles and Waste Management 21:415−422

doi: 10.1007/s10163-018-00826-w
[33]

van Grinsven S, Sinninghe Damsté JS, Harrison J, Polerecky L, Villanueva L. 2021. Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnology and Oceanography 66:878−891

doi: 10.1002/lno.11648
[34]

Koo CW, Rosenzweig AC. 2021. Biochemistry of aerobic biological methane oxidation. Chemical Society Reviews 50:3424−3436

doi: 10.1039/d0cs01291b
[35]

Tucci FJ, Rosenzweig AC. 2024. Direct methane oxidation by copper- and iron-dependent methane monooxygenases. Chemical Reviews 124:1288−1320

doi: 10.1021/acs.chemrev.3c00727
[36]

Yang W, Wang W, Shen L, Bai Y, Liu X, et al. 2022. Biogeographical distribution and regulation of methanotrophs in Chinese paddy soils. European Journal of Soil Science 73:e13200

doi: 10.1111/ejss.13200
[37]

Houghton KM, Carere CR, Stott MB, McDonald IR. 2019. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiology Ecology 95:fiz125

doi: 10.1093/femsec/fiz125
[38]

Bordel S, Rodríguez Y, Hakobyan A, Rodríguez E, Lebrero R, et al. 2019. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metabolic Engineering 54:191−199

doi: 10.1016/j.ymben.2019.04.001
[39]

Lieven C, Petersen LAH, Jørgensen SB, Gernaey KV, Herrgard MJ, et al. 2018. A genome-scale metabolic model for Methylococcus capsulatus (Bath) suggests reduced efficiency electron transfer to the particulate methane monooxygenase. Frontiers in Microbiology 9:2947

doi: 10.3389/fmicb.2018.02947
[40]

Awala SI, Bellosillo LA, Gwak JH, Nguyen NL, Kim SJ, et al. 2020. Methylococcus geothermalis sp. nov., a methanotroph isolated from a geothermal field in the Republic of Kore. International Journal of Systematic and Evolutionary Microbiology 70:5520−5530

doi: 10.1099/ijsem.0.004442
[41]

Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, et al. 2011. Complete genome sequence of the aerobic marine Methanotroph Methylomonas methanica MC09. Journal of Bacteriology 193:7001−7002

doi: 10.1128/Jb.06267-11
[42]

Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, et al. 2012. Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. International Journal of Systematic and Evolutionary Microbiology 62:1832−1837

doi: 10.1099/ijs.0.035261-0
[43]

Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. 2006. Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). International Journal of Systematic and Evolutionary Microbiology 56:109−113

doi: 10.1099/ijs.0.63728-0
[44]

Iguchi H, Yurimoto H, Sakai Y. 2011. Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology 61:810−815

doi: 10.1099/ijs.0.019604-0
[45]

Oshkin IY, Belova SE, Danilova OV, Miroshnikov KK, Rijpstra WIC, et al. 2016. Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum. International Journal of Systematic and Evolutionary Microbiology 66:2417−2423

doi: 10.1099/ijsem.0.001046
[46]

Rahalkar M, Bussmann I, Schink B. 2007. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. International Journal of Systematic and Evolutionary Microbiology 57:1073−1080

doi: 10.1099/ijs.0.64574-0
[47]

Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA. 2005. Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. International Journal of Systematic and Evolutionary Microbiology 55:1877−1884

doi: 10.1099/ijs.0.63691-0
[48]

Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, et al. 2011. Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. International Journal of Systematic and Evolutionary Microbiology 61:2646−2653

doi: 10.1099/ijs.0.028092-0
[49]

Geymonat E, Ferrando L, Tarlera SE. 2011. Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. International Journal of Systematic and Evolutionary Microbiology 61:2568−2572

doi: 10.1099/ijs.0.028274-0
[50]

Heyer J, Berger U, Hardt M, Dunfield PF. 2005. Methylohalobius crimeensis gen. nov , sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. International Journal of Systematic and Evolutionary Microbiology 55:1817−1826

doi: 10.1099/ijs.0.63213-0
[51]

Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, et al. 2013. Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. International Journal of Systematic and Evolutionary Microbiology 63:1073−1082

doi: 10.1099/ijs.0.040568-0
[52]

Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, et al. 2015. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs. International Journal of Systematic and Evolutionary Microbiology 65:251−259

doi: 10.1099/ijs.0.062927-0
[53]

Kalyuzhnaya MG, Beck DAC, Vorobev A, Smalley N, Kunkel DD, et al. 2012. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. International Journal of Systematic and Evolutionary Microbiology 62:106−111

doi: 10.1099/ijs.0.029165-0
[54]

Lindner AS, Pacheco A, Aldrich HC, Staniec AC, Uz I, et al. 2007. Methylocystis hirsuta sp nov., a novel methanotroph isolated from a groundwater aquifer. International Journal of Systematic and Evolutionary Microbiology 57:1891−1900

doi: 10.1099/ijs.0.64541-0
[55]

Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN. 2003. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. International Journal of Systematic and Evolutionary Microbiology 53:1231−1239

doi: 10.1099/ijs.0.02481-0
[56]

Dunfield PF, Belova SE, Vorob'ev AV, Cornish SL, Dedysh SN. 2010. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. International Journal of Systematic and Evolutionary Microbiology 60:2659−2664

doi: 10.1099/ijs.0.020149-0
[57]

Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, et al. 2011. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. International Journal of Systematic and Evolutionary Microbiology 61:2456−2463

doi: 10.1099/ijs.0.028118-0
[58]

Zhang X, Xia L, Liu J, Wang Z, Yang Y, et al. 2023. Comparative genomic analysis of a Methylorubrum rhodesianum MB200 isolated from biogas digesters provided new insights into the carbon metabolism of methylotrophic bacteria. International Journal of Molecular Sciences 24:7521

doi: 10.3390/ijms24087521
[59]

Zou QH, Feng X, Wang TJ, Du ZJ. 2021. Methylobrevis albus sp. nov., isolated from freshwater lake sediment. Archives of Microbiology 203:4549−4556

doi: 10.1007/s00203-021-02442-z
[60]

Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. 2017. Methylacidiphilum fumariolicum SolV, a thermoacidophilic 'Knallgas' methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. The ISME Journal 11:945−958

doi: 10.1038/ismej.2016.171
[61]

Hou S, Makarova KS, Saw JH, Senin P, Ly BV, et al. 2008. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biology Direct 3:26

doi: 10.1186/1745-6150-3-26
[62]

van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, et al. 2014. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Applied and Environmental Microbiology 80:6782−6791

doi: 10.1128/Aem.01838-14
[63]

Picone N, Blom P, Hogendoorn C, Frank J, van Alen T, et al. 2021. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Frontiers in Microbiology 12:666929

doi: 10.3389/fmicb.2021.666929
[64]

Janvier M, Frehel C, Grimont F, Gasser F. 1985. Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. International Journal of Systematic Bacteriology 35:131−139

doi: 10.1099/00207713-35-2-131
[65]

Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. 2006. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. International Journal of Systematic and Evolutionary Microbiology 56:2819−2823

doi: 10.1099/ijs.0.64191-0
[66]

Urakami T, Sasaki J, Suzuki KI, Komagata K. 1995. Characterization and description of Hyphomicrobium denitrificans sp. nov. International Journal of Systematic Bacteriology 45:528−532

doi: 10.1099/00207713-45-3-528
[67]

Nokhal TH, Schlegel HG. 1983. Taxonomic study of Paracoccus denitrificans. International Journal of Systematic Bacteriology 33:26−37

doi: 10.1099/00207713-33-1-26
[68]

Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, et al. 2006. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. International Journal of Systematic and Evolutionary Microbiology 56:2517−2522

doi: 10.1099/ijs.0.64422-0
[69]

Doronina NV, Trotsenko YA, Krausova VI, Boulygina ES, Tourova TP. 1998. Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. International Journal of Systematic Bacteriology 48:1313−1321

doi: 10.1099/00207713-48-4-1313
[70]

Islam T, Gessesse A, Garcia-Moyano A, Murrell JC, Øvreås L. 2020. A novel moderately thermophilic type Ib methanotroph isolated from an alkaline thermal spring in the Ethiopian Rift valley. Microorganisms 8:250

doi: 10.3390/microorganisms8020250
[71]

Yao X, Wang J, Hu B. 2022. How methanotrophs respond to pH: a review of ecophysiology. Frontiers in Microbiology 13:1034164

doi: 10.3389/fmicb.2022.1034164
[72]

Kambara H, Kawamoto T, Matsushita S, Kindaichi T, Ozaki N, et al. 2025. First isolation of a methanotrophic Mycobacterium reveals ammonia- and pH-tolerant methane oxidation. Applied and Environmental Microbiology 91:e00796-25

doi: 10.1128/aem.00796-25
[73]

Wang Y, Cai Y, Hou F, Jia Z. 2024. Depth-dependent patterns of activity and abundance of atmospheric methane-oxidizing bacteria in semiarid grassland on the Loess Plateau of China. Applied Soil Ecology 195:105237

doi: 10.1016/j.apsoil.2023.105237
[74]

Samad MS, Bertilsson S. 2017. Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Frontiers in Microbiology 8:142

doi: 10.3389/fmicb.2017.00142
[75]

He Y, Yang Y, Huang H, Yang W, Ren B, et al. 2024. Spatio-temporal variations in activity of aerobic methane oxidation and community structure of methanotrophs in sediment of Wuxijiang river. Environmental Pollution 363:125200

doi: 10.1016/j.envpol.2024.125200
[76]

Han JS, Mahanty B, Yoon SU, Kim CG. 2016. Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent. Geomicrobiology Journal 33:878−885

doi: 10.1080/01490451.2015.1123330
[77]

Hogendoorn C, Pol A, Nuijten GHL, Op den Camp HJM, Atomi H. 2020. Methanol production by "Methylacidiphilum fumariolicum" SolV under different growth conditions. Applied and Environmental Microbiology 86:e01188-20

doi: 10.1128/aem.01188-20
[78]

Belova SE, Danilova OV, Ivanova AA, Merkel AY, Dedysh SN. 2020. Methane-oxidizing communities in lichen-dominated forested tundra are composed exclusively of high-affinity USCα methanotrophs. Microorganisms 8:2047

doi: 10.3390/microorganisms8122047
[79]

Lazic M, Gudneppanavar R, Whiddon K, Sauvageau D, Stein LY, et al. 2022. In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell. Applied Microbiology and Biotechnology 106:811−819

doi: 10.1007/s00253-021-11732-x
[80]

Schmider T, Hestnes AG, Brzykcy J, Schmidt H, Schintlmeister A, et al. 2024. Physiological basis for atmospheric methane oxidation and methanotrophic growth on air. Nature Communications 15:4151

doi: 10.1038/s41467-024-48197-1
[81]

Prejanò M, Russo N, Marino T. 2020. How lanthanide ions affect the addition-elimination step of methanol dehydrogenases. Chemistry 26:11334−11339

doi: 10.1002/chem.202001855
[82]

Tikhonova EN, Suleimanov RZ, Miroshnikov KK, Oshkin IY, Belova SE, et al. 2023. Methylomonas rapida sp. nov., a novel species of fast-growing, carotenoid-producing obligate methanotrophs with high biotechnological potential. Systematic and Applied Microbiology 46:126398

doi: 10.1016/j.syapm.2023.126398
[83]

Vekeman B, Kerckhof FM, Cremers G, de Vos P, Vandamme P, et al. 2016. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environmental Microbiology 18:4523−4536

doi: 10.1111/1462-2920.13485
[84]

Yasuda S, Toyoda R, Agrawal S, Suenaga T, Riya S, et al. 2020. Exploration and enrichment of methane-oxidizing bacteria derived from a rice paddy field emitting highly concentrated methane. Journal of Bioscience and Bioengineering 130:311−318

doi: 10.1016/j.jbiosc.2020.04.006
[85]

Areniello M, Matassa S, Esposito G, Lens PNL. 2023. Microbial protein production from sulfide-rich biogas through an enrichment of methane- and sulfur-oxidizing bacteria. Bioresource Technology 383:129237

doi: 10.1016/j.biortech.2023.129237
[86]

Kwon M, Ho A, Yoon S. 2019. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Applied Microbiology and Biotechnology 103:1−8

doi: 10.1007/s00253-018-9435-1
[87]

Kim J, Kim DD, Yoon S. 2018. Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Applied Microbiology and Biotechnology 102:5707−5715

doi: 10.1007/s00253-018-8978-5
[88]

Wang X, Wang S, Diao Z, Hou X, Gong Y, et al. 2025. Label-free high-throughput live-cell sorting of genome-wide random mutagenesis libraries for metabolic traits by Raman flow cytometry. Proceedings of the National Academy of Sciences of the United States of America 122:e2503641122

doi: 10.1073/pnas.2503641122
[89]

Matos Pereira Lima F, Laniel M, Balde H, Gordon R, VanderZaag A. 2025. Methane emission reduction by adding sulfate to liquid dairy manure. Journal of Environmental Quality 54:349−358

doi: 10.1002/jeq2.70002
[90]

Lidstrom ME. 2024. Direct methane removal from air by aerobic methanotrophs. Cold Spring Harbor Perspectives in Biology 16:a041671

doi: 10.1101/cshperspect.a041671
[91]

Yang K, Zhang P, Yue C, Chen K, Ji H, et al. 2020. Experimental research on methane/air explosion inhibition using ultrafine water mist containing methane oxidizing bacteria. Journal of Loss Prevention in the Process Industries 67:104256

doi: 10.1016/j.jlp.2020.104256
[92]

Zhou Y, Zhang R, Tian K, Zhao S, Shi H, et al. 2023. Characteristics of the methanotroph used in coalbed methane emission reduction: methane oxidation efficiency and coal wettability. Fuel 349:128596

doi: 10.1016/j.fuel.2023.128596
[93]

Sun MT, Yang ZM, Fu SF, Fan XL, Guo RB. 2018. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria. Bioresource Technology 256:201−207

doi: 10.1016/j.biortech.2018.02.020
[94]

Lee JH, Yang H, Cho KS. 2023. Inoculation effect of methanotrophs on rhizoremediation performance and methane emission in diesel-contaminated soil. Journal of Microbiology and Biotechnology 33:886−894

doi: 10.4014/jmb.2301.01007
[95]

Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, et al. 2018. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Management 71:277−286

doi: 10.1016/j.wasman.2017.10.037
[96]

Sang Y, Hao Q, Zhang Y, Wang O, Zheng S, Liu F. 2025. Simultaneous removal of methane and high nitrite from the wastewater by Methylomonas sp. with soluble methane monooxygenase. Bioresource Technology 418:131972

doi: 10.1016/j.biortech.2024.131972
[97]

Chang J, Kim DD, Semrau JD, Lee JY, Heo H, et al. 2021. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Applied and Environmental Microbiology 87:e02301-20

doi: 10.1128/aem.02301-20
[98]

Lv PL, Wei CH, Zhao HP, Chen R. 2024. Methane-driven microbial nitrous oxide production and reduction in denitrifying anaerobic methane oxidation cultures. Environmental Technology & Innovation 36:103874

doi: 10.1016/j.eti.2024.103874
[99]

Awala SI, Gwak JH, Kim Y, Jung MY, Dunfield PF, et al. 2024. Nitrous oxide respiration in acidophilic methanotrophs. Nature Communications 15:4226

doi: 10.1038/s41467-024-48161-z
[100]

Li R, Yuan Y, Xi B, Tan W. 2025. Anaerobic methane oxidation coupled with denitrification mitigates soil nitrous oxide emissions. Science Advances 11:eadv1410

doi: 10.1126/sciadv.adv1410
[101]

Yao X, Hu B. 2024. Methane-dependent denitrification by Methylomirabilis: an indirect nitrous oxide sink? Trends in Microbiology 32:1053−1057

doi: 10.1016/j.tim.2024.07.008
[102]

Pannekens M, Kroll L, Müller H, Mbow FT, Meckenstock RU. 2019. Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnology 49:1−9

doi: 10.1016/j.nbt.2018.11.006
[103]

Liang W, Chen Q, Peng F, Shen A, Hu J. 2018. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria. Talanta 184:156−161

doi: 10.1016/j.talanta.2018.02.099
[104]

Hosseini A, Saberi MH, ZareNezhad B. 2022. Significance of petroleum seepages in hydrocarbon exploration-case study of Khourian Desert, Central Iran. Journal of Petroleum Exploration and Production Technology 12:1649−1663

doi: 10.1007/s13202-021-01440-7
[105]

Xu K, Yan Z, Tao C, Wang F, Zheng X, et al. 2024. A novel bioprospecting strategy via 13C-based high-throughput probing of active methylotrophs inhabiting oil reservoir surface soil. Science of The Total Environment 924:171686

doi: 10.1016/j.scitotenv.2024.171686
[106]

Kim Y, Flinkstrom Z, Candry P, Winkler MKH, Myung J. 2023. Resource availability governs polyhydroxyalkanoate (PHA) accumulation and diversity of methanotrophic enrichments from wetlands. Frontiers in Bioengineering and Biotechnology 11:1210392

doi: 10.3389/fbioe.2023.1210392
[107]

Cantera S, Lebrero R, Rodríguez S, García-Encina PA, Muñoz R. 2017. Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products. Chemical Engineering Journal 328:44−48

doi: 10.1016/j.cej.2017.07.027
[108]

Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT. 2018. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnology for Biofuels 11:129

doi: 10.1186/s13068-018-1128-6
[109]

Nguyen DTN, Lee OK, Hadiyati S, Affifah AN, Kim MS, et al. 2019. Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metabolic Engineering 54:170−179

doi: 10.1016/j.ymben.2019.03.013
[110]

Lee H, Baek JI, Lee JY, Jeong J, Kim H, et al. 2021. Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate. Metabolic Engineering 67:285−292

doi: 10.1016/j.ymben.2021.07.008
[111]

Gęsicka A, Oleskowicz-Popiel P, Łężyk M. 2021. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnology Advances 53:107861

doi: 10.1016/j.biotechadv.2021.107861
[112]

Patel SKS, Kalia VC, Joo JB, Kang YC, Lee JK. 2020. Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresource Technology 297:122433

doi: 10.1016/j.biortech.2019.122433
[113]

Patel SKS, Kondaveeti S, Otari SV, Pagolu RT, Jeong SH, et al. 2018. Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477−485

doi: 10.1016/j.energy.2017.12.142
[114]

Patel SKS, Gupta RK, Kondaveeti S, Otari SV, Kumar A, et al. 2020. Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresource Technology 315:123791

doi: 10.1016/j.biortech.2020.123791
[115]

Kim IT, Ahn KH, Lee YE, Jeong Y, Park JR, et al. 2021. An experimental study on the biological fixation and effective use of carbon using biogas and bacterial community dominated by methanotrophs, methanol-oxidizing bacteria, and ammonia-oxidizing bacteria. Catalysts 11:1342

doi: 10.3390/catal11111342
[116]

Patel SKS, Kalia VC, Lee JK. 2023. Integration of biogas derived from dark fermentation and anaerobic digestion of biowaste to enhance methanol production by methanotrophs. Bioresource Technology 369:128427

doi: 10.1016/j.biortech.2022.128427
[117]

Patel SKS, Gupta RK, Kim IW, Lee JK. 2023. Encapsulation of methanotrophs within a polymeric matrix containing copper- and iron-based nanoparticles to enhance methanol production from a simulated biogas. Polymers 15:3667

doi: 10.3390/polym15183667
[118]

Zhang W, Ge X, Li YF, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochemistry 51:838−844

doi: 10.1016/j.procbio.2016.04.003
[119]

Patel SKS, Gupta RK, Kumar V, Kondaveeti S, Kumar A, et al. 2020. Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian Journal of Microbiology 60:318−324

doi: 10.1007/s12088-020-00883-6
[120]

Areniello M, Matassa S, Esposito G, Lens PNL. 2024. H2S-laden biogas triggers sulfur amino acids production in microbial protein synthesized during mixed culture fermentation by methane and sulfur oxidizing bacteria. Chemical Engineering Journal 490:151648

doi: 10.1016/j.cej.2024.151648
[121]

Zha X, Tsapekos P, Zhu X, Khoshnevisan B, Lu X, et al. 2021. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresource Technology 320:124351

doi: 10.1016/j.biortech.2020.124351
[122]

Rasouli Z, Valverde-Pérez B, D'Este M, De Francisci D, Angelidaki I. 2018. Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochemical Engineering Journal 134:129−135

doi: 10.1016/j.bej.2018.03.010
[123]

Zhang B, Zhang L, Liu J, Cai C, Zhou Y. 2025. Community succession and protein enhancement in a mixed methanotroph-microalgae system with stepwise increase of ammonium loading - Inhibition and adaptation. Water Research 284:123995

doi: 10.1016/j.watres.2025.123995
[124]

Ma Y, Liu T, Yuan Z, Guo J. 2024. Single cell protein production from methane in a gas-delivery membrane bioreactor. Water Research 259:121820

doi: 10.1016/j.watres.2024.121820
[125]

Zhang T, Wang X, Zhou J, Zhang Y. 2018. Enrichments of methanotrophic–heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. Journal of Environmental Sciences 65:133−143

doi: 10.1016/j.jes.2017.03.016
[126]

Salem R, Soliman M, Fergala A, Audette GF, ElDyasti A. 2021. Screening for methane utilizing mixed communities with high polyhydroxybutyrate (PHB) production capacity using different design approaches. Polymers 13:1579

doi: 10.3390/polym13101579
[127]

Lee OK, Kang SG, Choi TR, Yang YH, Lee EY. 2023. Production and characterization of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), using the type II methanotroph, Methylocystis sp. MJC1. Bioresource Technology 389:129853

doi: 10.1016/j.biortech.2023.129853
[128]

Myung J, Flanagan JCA, Waymouth RM, Criddle CS. 2017. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7:118

doi: 10.1186/s13568-017-0417-y
[129]

Kulkarni PP, Chavan SB, Deshpande MS, Sagotra D, Kumbhar PS, et al. 2022. Enrichment of Methylocystis dominant mixed culture from rice field for PHB production. Journal of Biotechnology 343:62−70

doi: 10.1016/j.jbiotec.2021.11.007
[130]

Amabile C, Abate T, De Crescenzo C, Sabbarese S, Muñoz R, et al. 2022. Sustainable process for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from renewable resources: a simulation study. ACS Sustainable Chemistry & Engineering 10:14230−14239

doi: 10.1021/acssuschemeng.2c04111
[131]

Fergala A, AlSayed A, Eldyasti A. 2018. Factors affecting the selection of PHB accumulating methanotrophs from waste activated sludge while utilizing ammonium as their nitrogen source. Journal of Chemical Technology & Biotechnology 93:1359−1369

doi: 10.1002/jctb.5502
[132]

Mardina P, Li J, Patel SKS, Kim IW, Lee JK, et al. 2016. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. Journal of Microbiology and Biotechnology 26:1234−1241

doi: 10.4014/jmb.1602.02074
[133]

Sahoo KK, Katari JK, Das D. 2023. Recent advances in methanol production from methanotrophs. World Journal of Microbiology and Biotechnology 39:360

doi: 10.1007/s11274-023-03813-y
[134]

Li R, Fan X, Jiang Y, Wang R, Guo R, et al. 2023. From anaerobic digestion to single cell protein synthesis: a promising route beyond biogas utilization. Water Research 243:120417

doi: 10.1016/j.watres.2023.120417
[135]

Ritala A, Häkkinen ST, Toivari M, Wiebe MG. 2017. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology 8:2009

doi: 10.3389/fmicb.2017.02009
[136]

Nyyssölä A, Suhonen A, Ritala A, Oksman-Caldentey KM. 2022. The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology 75:102686

doi: 10.1016/j.copbio.2022.102686
[137]

Khoshnevisan B, Tsapekos P, Zhang Y, Valverde-Pérez B, Angelidaki I. 2019. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production. Bioresource Technology 290:121743

doi: 10.1016/j.biortech.2019.121743
[138]

Ma Y, Liu T, Yuan Z, Guo J. 2025. Microbial conversion of methane into single cell protein in a dual-membrane biofilm reactor. Water Research 283:123838

doi: 10.1016/j.watres.2025.123838
[139]

Patel SKS, Singh D, Pant D, Gupta RK, Busi S, et al. 2024. Polyhydroxyalkanoate production by methanotrophs: recent updates and perspectives. Polymers 16:2570

doi: 10.3390/polym16182570
[140]

Yoon J, Oh MK. 2022. Strategies for biosynthesis of C1 gas-derived polyhydroxyalkanoates: a review. Bioresource Technology 344:126307

doi: 10.1016/j.biortech.2021.126307
[141]

Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, et al. 2016. The opportunity for high-performance biomaterials from methane. Microorganisms 4:11

doi: 10.3390/microorganisms4010011
[142]

Jiang H, Duan C, Jiang P, Liu M, Luo M, et al. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochemical Engineering Journal 109:112−117

doi: 10.1016/j.bej.2015.12.001
[143]

Srivastava RK, Sarangi PK, Bhatia L, Singh AK, Shadangi KP. 2022. Conversion of methane to methanol: technologies and future challenges. Biomass Conversion and Biorefinery 12:1851−1875

doi: 10.1007/s13399-021-01872-5
[144]

Ishikawa M, Tanaka Y, Suzuki R, Kimura K, Tanaka K, et al. 2017. Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresource Technology 241:1157−1161

doi: 10.1016/j.biortech.2017.05.107
[145]

But SY, Suleimanov RZ, Oshkin IY, Rozova ON, Mustakhimov II, et al. 2024. New solutions in single-cell protein production from methane: construction of glycogen-deficient mutants of Methylococcus capsulatus MIR. Fermentation 10:265

doi: 10.3390/fermentation10050265
[146]

Park S, Shin C, Criddle CS, Myung J. 2025. Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph Methylosinus trichosporium OB3b upon nutrient availability. Applied and Environmental Microbiology 91:e00969-25

doi: 10.1128/aem.00969-25
[147]

Pérez R, Casal J, Muñoz R, Lebrero R. 2019. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: assessing the effect of temperature and phosphorus limitation. Science of The Total Environment 688:684−690

doi: 10.1016/j.scitotenv.2019.06.296
[148]

Pérez V, Lebrero R, Muñoz R, Pérez R. 2024. The fundamental role of pH in CH4 bioconversion into polyhydroxybutyrate in mixed methanotrophic cultures. Chemosphere 355:141832

doi: 10.1016/j.chemosphere.2024.141832
[149]

Rodríguez Y, Firmino PIM, Arnáiz E, Lebrero R, Muñoz R. 2020. Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1. Science of The Total Environment 706:135136

doi: 10.1016/j.scitotenv.2019.135136
[150]

Pérez R, Cantera S, Bordel S, García-Encina PA, Muñoz R. 2019. The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production. International Biodeterioration & Biodegradation 140:144−151

doi: 10.1016/j.ibiod.2019.04.004
[151]

Rodríguez Y, García S, Pérez R, Lebrero R, Muñoz R. 2022. Optimization of nitrogen feeding strategies for improving polyhydroxybutyrate production from biogas by Methylocystis parvus str. OBBP in a stirred tank reactor. Chemosphere 299:134443

doi: 10.1016/j.chemosphere.2022.134443
[152]

Sarwar A, Nguyen LT, Lee EY. 2025. Methanotrophic and heterotrophic co-cultures for the Polyhydroxybutyrate production by co-utilizing C1 and C3 gaseous substrates. Bioresource Technology 420:132111

doi: 10.1016/j.biortech.2025.132111