[1]

Yakaboylu O, Harinck J, Smit KG, De Jong W. 2015. Supercritical water gasification of biomass: a literature and technology overview. Energies 8:859−894

doi: 10.3390/en8020859
[2]

Bai B, Sun J, Wang Y, Yu X, Zhou W, et al. 2024. CO2 intensified supercritical water gasification of waste plastics. Chemical Engineering Journal 502:157847

doi: 10.1016/j.cej.2024.157847
[3]

Zhao Q, Niu J, Dong Y, Song Z, Ke B, et al. 2024. Sub- and supercritical water upgrading of heavy oil: a review of laboratory-scale research on upgrading performance and physicochemical mechanism. Chemical Engineering Journal 500:157376

doi: 10.1016/j.cej.2024.157376
[4]

Mi Z, Wang S, Huang X, Yang C, Zhang F, et al. 2025. Review of the supercritical water gasification system: components, challenges and sustainability. Energy Conversion and Management 323:119169

doi: 10.1016/j.enconman.2024.119169
[5]

Huang Z, Zhao Q, Chen L, Guo L, Miao Y, et al. 2023. Experimental investigation of enhanced oil recovery and in-situ upgrading of heavy oil via CO2- and N2-assisted supercritical water flooding. Chemical Engineering Science 268:118378

doi: 10.1016/j.ces.2022.118378
[6]

Gong M, Wang Y, Fan Y, Zhu W, Zhang H, et al. 2018. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: effect of reaction parameters and reaction pathways. Waste Management 72:287−295

doi: 10.1016/j.wasman.2017.11.024
[7]

Yang Y, Sun X, Li W. 2023. Comparison of change in nanopore structure of oil shale after anhydrous and sub/supercritical water pyrolysis. International Journal of Energy 2:31−37

doi: 10.54097/ije.v2i3.8805
[8]

Leoni F, Calero C, Franzese G. 2021. Nanoconfined fluids: uniqueness of water compared to other liquids. ACS Nano 15:19864−19876

doi: 10.1021/acsnano.1c07381
[9]

Zhang B, Zhao X, Zhang J, Wang J, Jin H. 2023. An investigation of the density of nano-confined subcritical/supercritical water. Energy 284:129185

doi: 10.1016/j.energy.2023.129185
[10]

Zhang B, Li X, Zhang J, Wang J, Jin H. 2025. Study on the self-diffusion coefficients of binary mixtures of supercritical water and H2, CO, CO2, CH4 confined in carbon nanotubes. Water Research 283:123856

doi: 10.1016/j.watres.2025.123856
[11]

Yang H, Liu Y, Zhang H, Li ZS. 2006. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation. Polymer 47:7607−7610

doi: 10.1016/j.polymer.2006.08.047
[12]

Nie C, Tong X, Wu S, Gong S, Peng D. 2015. Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies. RSC Advances 5:92812−92817

doi: 10.1039/C5RA17152K
[13]

Fomin YD, Tsiok EN, Ryzhov VN. 2015. The behavior of benzene confined in a single wall carbon nanotube. Journal of Computational Chemistry 36:901−906

doi: 10.1002/jcc.23872
[14]

Shishehbor M, Esmaeeli HS, Pouranian MR. 2021. The adhesion and diffusion of saturate, asphaltene, resin and aromatic (SARA) molecules on oxygenated and hydrogenated carbon nanotubes (CNTs). Infrastructures 6:123

doi: 10.3390/infrastructures6090123
[15]

Bie C, Yang J, Zeng X, Wang Z, Sun X, et al. 2025. Nanoconfinement effects in electrocatalysis and photocatalysis. Small 21:2411184

doi: 10.1002/smll.202411184
[16]

Ilgen AG, Leung K, Criscenti LJ, Greathouse JA. 2023. Adsorption at nanoconfined solid-water interfaces. Annual Review of Physical Chemistry 74:169−191

doi: 10.1146/annurev-physchem-083022-030802
[17]

Zhao X, Jin H, Chen Y, Ge Z. 2021. Numerical study of H2, CH4, CO, O2 and CO2 diffusion in water near the critical point with molecular dynamics simulation. Computers & Mathematics with Applications 81:759−771

doi: 10.1016/j.camwa.2019.11.012
[18]

Meng F, Yao C, Zhang H, Zheng Y, Di T, et al. 2023. Experimental investigation on the pyrolysis process and product distribution characteristics of organic-rich shale via supercritical water. Fuel 333:126338

doi: 10.1016/j.fuel.2022.126338
[19]

Ding W, Jin H, Takahashi O. 2023. A molecular dynamics simulation study on the diffusion coefficients of the OH, H, and HO2 free radicals related in the hydrogen production process in supercritical water. Industrial & Engineering Chemistry Research 62:16968−16976

doi: 10.1021/acs.iecr.3c00784
[20]

Stolte N, Hou R, Pan D. 2022. Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Nature Communications 13:5932

doi: 10.1038/s41467-022-33696-w
[21]

Hummer G, Rasaiah JC, Noworyta JP. 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188−190

doi: 10.1038/35102535
[22]

Sun C, Zhou R, Zhao Z, Bai B. 2020. Nanoconfined fluids: what can we expect from them? The Journal of Physical Chemistry Letters 11:4678−4692

doi: 10.1021/acs.jpclett.0c00591
[23]

Ding M, Duan X, Shi T. 2017. Polymer escape from confining nanotube in reverse flow. Macromolecules 50:7777−7782

doi: 10.1021/acs.macromol.7b00552
[24]

Li Z, Noy A. 2025. Carbon nanotube nanofluidics. Chemical Society Reviews 54:8582−8635

doi: 10.1039/D5CS00233H
[25]

Hughes KJ, Iyer KA, Bird RE, Ivanov J, Banerjee S, et al. 2024. Review of carbon nanotube research and development: materials and emerging applications. ACS Applied Nano Materials 7:18695−18713

doi: 10.1021/acsanm.4c02721
[26]

Ge H, Yi L, Huang Y, Peng P, Cao W, et al. 2023. Insight into the interconversion mechanisms during the supercritical water gasification of bark. Chemical Engineering Journal 468:143683

doi: 10.1016/j.cej.2023.143683
[27]

Rong S, Wang R, Xie A, Peng Z, Cao P, et al. 2024. Molecular dynamics simulation and experimental analysis of nucleation and growth mechanism of mixed inorganic salts in supercritical water. Chemical Engineering Journal 481:148597

doi: 10.1016/j.cej.2024.148597
[28]

Bardwell L, Rahbari A, Wang Y, Amidy M, Pye J. 2024. Piggery waste to sustainable fuels via indirect supercritical water gasification and membrane reforming at 600 °C: a techno-economic assessment. Sustainable Energy & Fuels 8:2869−2879

doi: 10.1039/D3SE01634J
[29]

BIOVIA DS. 2008. Materials Studio 4.3. San Diego, USA

[30]

Ryckaert JP, Ciccotti G, Berendsen HJC. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 23:327−341

doi: 10.1016/0021-9991(77)90098-5
[31]

Fomin YD, Ryzhov VN, Tsiok EN, Brazhkin VV. 2015. Dynamical crossover line in supercritical water. Scientific Reports 5:14234

doi: 10.1038/srep14234
[32]

Assomo JGGN, Ebrahimi S, Jay-Gerin JP, Soldera A. 2024. Supercritical water: a simulation study to unravel the heterogeneity of its molecular structures. Molecules 29:2947

doi: 10.3390/molecules29122947
[33]

Ghahremanpour MM, Tirado-Rives J, Jorgensen WL. 2022. Refinement of the optimized potentials for liquid simulations force field for thermodynamics and dynamics of liquid alkanes. The Journal of Physical Chemistry B 126:5896−5907

doi: 10.1021/acs.jpcb.2c03686
[34]

Price DJ, Brooks CL, 3rd. 2005. Detailed considerations for a balanced and broadly applicable force field: a study of substituted benzenes modeled with OPLS-AA. Journal of Computational Chemistry 26:1529−1541

doi: 10.1002/jcc.20284
[35]

Saito N, Usui Y, Aoki K, Narita N, Shimizu M, et al. 2009. Carbon nanotubes: biomaterial applications. Chemical Society Reviews 38:1897−1903

doi: 10.1039/b804822n
[36]

Saito N, Haniu H, Usui Y, Aoki K, Hara K, et al. 2014. Safe clinical use of carbon nanotubes as innovative biomaterials. Chemical Reviews 114:6040−6079

doi: 10.1021/cr400341h
[37]

Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics 14:33−38

doi: 10.1016/0263-7855(96)00018-5
[38]

Srivastava A, Abedrabbo S, Hassan J, Homouz D. 2024. Dynamics of confined water inside carbon nanotubes based on studying tetrahedral order parameters. Scientific Reports 14:15480

doi: 10.1038/s41598-024-66317-1
[39]

Mendonça BHS, de Moraes EE, Batista RJC, de Oliveira AB, Barbosa MC, et al. 2023. Water diffusion in carbon nanotubes for rigid and flexible models. The Journal of Physical Chemistry C 127:9769−9778

doi: 10.1021/acs.jpcc.3c00490
[40]

Sam A, Kannam SK, Hartkamp R, Sathian SP. 2017. Water flow in carbon nanotubes: the effect of tube flexibility and thermostat. The Journal of Chemical Physics 146:234701

doi: 10.1063/1.4985252
[41]

Nanda S, Reddy SN, Hunter HN, Dalai AK, Kozinski JA. 2015. Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. The Journal of Supercritical Fluids 104:112−121

doi: 10.1016/j.supflu.2015.05.009
[42]

Peterson AA, Vogel F, Lachance RP, Fröling M, Antal J, et al. 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy & Environmental Science 1:32−65

doi: 10.1039/B810100K
[43]

Martínez L, Andrade R, Birgin EG, Martínez JM. 2009. PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry 30:2157−2164

doi: 10.1002/jcc.21224
[44]

Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, et al. 2022. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications 271:108171

doi: 10.1016/j.cpc.2021.108171
[45]

Jones JE. 1924. On the determination of molecular fields. —II. From the equation of state of a gas. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106:463−477

doi: 10.1098/rspa.1924.0082
[46]

Lorentz HA. 1881. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik 248:127−136

doi: 10.1002/andp.18812480110
[47]

Allen MP, Tildesley DJ. 2017. Computer Simulation of Liquids. US: Oxford University Press doi: 10.1093/oso/9780198803195.001.0001

[48]

Hockney RW, Eastwood JW. 1988. Computer simulation using particles, 1st edition. US: CRC Press doi: 10.1201/9780367806934

[49]

Hestenes MR, Stiefel E. 1952. Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards 49:409−435

doi: 10.6028/JRES.049.044
[50]

Press W, Flannery B, Teukolsky S, Vetterling W. 1990. Numerical recipes: the art of scientific computing. Acta Applicandae Mathematica 19:297−299

doi: 10.1007/BF01321860
[51]

Lamb WJ, Hoffman GA, Jonas J. 1981. Self-diffusion in compressed supercritical water. The Journal of Chemical Physics 74:6875−6880

doi: 10.1063/1.441097
[52]

Nieto-Draghi C, Àvalos JB, Contreras O, Ungerer P, Ridard J. 2004. Dynamical and structural properties of benzene in supercritical water. The Journal of Chemical Physics 121:10566−10576

doi: 10.1063/1.1804942
[53]

Witherspoon PA, Saraf DN. 1965. Diffusion of methane, ethane, propane, and n-Butane in water from 25 to 43°. The Journal of Physical Chemistry 69:3752−3755

doi: 10.1021/j100895a017
[54]

Björk J, Hanke F, Palma CA, Samori P, Cecchini M, et al. 2010. Adsorption of aromatic and anti-aromatic systems on graphene through π−π stacking. The Journal of Physical Chemistry Letters 1:3407−3412

doi: 10.1021/jz101360k
[55]

Su Y, Otake KI, Zheng JJ, Xu H, Wang Q, et al. 2024. Switching molecular recognition selectivities by temperature in a diffusion-regulatory porous material. Nature Communications 15:144

doi: 10.1038/s41467-023-44424-3
[56]

Doveiko D, Kubiak-Ossowska K, Chen Y. 2024. Estimating binding energies of π-stacked aromatic dimers using force field-driven molecular dynamics. International Journal of Molecular Sciences 25:5783

doi: 10.3390/ijms25115783
[57]

Rapacioli M, Calvo F, Spiegelman F, Joblin C, Wales DJ. 2005. Stacked clusters of polycyclic aromatic hydrocarbon molecules. The Journal of Physical Chemistry A 109:2487−2497

doi: 10.1021/jp046745z
[58]

Kar T, Bettinger HF, Scheiner S, Roy AK. 2008. Noncovalent π–π stacking and CH---π interactions of aromatics on the surface of single-wall carbon nanotubes: an MP2 study. The Journal of Physical Chemistry C 112:20070−20075

doi: 10.1021/jp807809u
[59]

Adedipe DT, Bayode AA, Ore OT. 2025. Progress in the application of graphene-based nanomaterials for gas adsorption and mitigation of air pollution. RSC Advances 15:31032−31059

doi: 10.1039/D5RA04635A
[60]

Plugatyr A, Svishchev IM. 2011. Molecular diffusivity of phenol in sub- and supercritical water: application of the split-flow Taylor dispersion technique. The Journal of Physical Chemistry 115:2555−2562

doi: 10.1021/jp1107075