[1]

Hou S, Dong H, Du X, Feng L. 2021. Early warning on risk development in compound lead and cadmium contaminated sites. Journal of Hazardous Materials 416:126174

doi: 10.1016/j.jhazmat.2021.126174
[2]

Zhang X, Zhang L, Yu T, Gao Y, Zhai T, et al. 2024. Genetic response analysis of Beauveria bassiana Z1 under high concentration Cd(II) stress. Journal of Hazardous Materials 464:132984

doi: 10.1016/j.jhazmat.2023.132984
[3]

Liu YQ, Chen Y, Li YY, Ding CY, Li BL, et al. 2024. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. Journal of Hazardous Materials 469:13405

doi: 10.1016/j.jhazmat.2024.134085
[4]

Jia X, Hu B, Marchant BP, Zhou L, Shi Z, et al. 2019. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the Yangtze Delta, China. Environmental Pollution 250:601−609

doi: 10.1016/j.envpol.2019.04.047
[5]

Hou D, Jia X, Wang L, McGrath SP, Zhu YG, et al. 2025. Global soil pollution by toxic metals threatens agriculture and human health. Science 388:316−321

doi: 10.1126/science.adr5214
[6]

Zhang C, Wang J, Zhang H, Lu F, Ruan C, et al. 2025. Biochar enhances the simultaneous stabilization of chromium and lead in contaminated soil by Penicillium oxalicum SL2. Chemical Engineering Journal 509:161522

doi: 10.1016/j.cej.2025.161522
[7]

Ren J, Ren X, Deng Z, Zhang H, Wang J, et al. 2025. Ecological effects of biochar in heavy metal-contaminated soils from multidimensional perspective: using meta-analysis. Bioresource Technology 432:132695

doi: 10.1016/j.biortech.2025.132695
[8]

Paul S, Kauser H, Jain MS, Khwairakpam M, Kalamdhad AS. 2020. Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment. Journal of Hazardous Materials 390:121366

doi: 10.1016/j.jhazmat.2019.121366
[9]

Yang L, Yang X, Guo J, Yang Z, Du Y, et al. 2024. Invasive plant-derived biochar for sustainable bioremediation of pesticide contaminated soil. Chemical Engineering Journal 481:148689

doi: 10.1016/j.cej.2024.148689
[10]

Soares MB, Pedrinho A, Ferreira JR, Mendes LW, Colzato M, et al. 2024. Redox conditions and biochar pyrolysis temperature affecting As and Pb biogeochemical cycles and bacterial community of sediment from mining tailings. Journal of Hazardous Materials 471:134303

doi: 10.1016/j.jhazmat.2024.134303
[11]

Wang YP, Liu YL, Tian SQ, Yang JJ, Wang L, et al. 2021. Straw biochar enhanced removal of heavy metal by ferrate. Journal of Hazardous Materials 416:126128

doi: 10.1016/j.jhazmat.2021.126128
[12]

Saffari N, Hajabbasi MA, Shirani H, Mosaddeghi MR, Mamedov AI. 2020. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. Journal of Environmental Management 261:110190

doi: 10.1016/j.jenvman.2020.110190
[13]

Weng Z, Van Zwieten L, Tavakkoli E, Rose MT, Singh BP, et al. 2022. Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nature Communications 13:5177

doi: 10.1038/s41467-022-32819-7
[14]

Shi A, Hu Y, Zhang X, Zhou D, Xu J, et al. 2023. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environmental Pollution 327:121559

doi: 10.1016/j.envpol.2023.121559
[15]

Singh H, Northup BK, Rice CW, Vara Prasad PV. 2022. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4:138

doi: 10.1007/s42773-022-00138-1
[16]

Abdu N, Abdullahi AA, Abdulkadir A. 2017. Heavy metals and soil microbes. Environmental Chemistry Letters 15:65−84

doi: 10.1007/s10311-016-0587-x
[17]

Tang R, Yao S, Liu Y, Ren T, Ma J, et al. 2025. Iron-modified biochar enhanced nitrogen retention during composting: bridging chemisorption and microbiome modulation. Chemical Engineering Journal 513:162761

doi: 10.1016/j.cej.2025.162761
[18]

Bai Z, Li T, Zhang S, Wang G, Xu X, et al. 2024. Effects of climate and geochemical properties on the chemical forms of soil Cd, Pb and Cr along a more than 4000 km transect. Journal of Hazardous Materials 467:133746

doi: 10.1016/j.jhazmat.2024.133746
[19]

Dai Z, Xiong X, Zhu H, Xu H, Leng P, et al. 2021. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 3:239−254

doi: 10.1007/s42773-021-00099-x
[20]

Li X, Peng P, Long J, Dong X, Jiang K, et al. 2020. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars. Journal of Cleaner Production 256:120494

doi: 10.1016/j.jclepro.2020.120494
[21]

Zhou J, Liu Z, Li Z, Xie R, Jiang X, et al. 2025. Heavy metals release in lead-zinc tailings: effects of weathering and acid rain. Journal of Hazardous Materials 483:136645

doi: 10.1016/j.jhazmat.2024.136645
[22]

Qvarforth A, Svensson PA, Lundgren M, Rodushkin I, Engström E, et al. 2025. Geochemical insights into plant uptake of technology-critical elements: a case study on lettuce from European soils. Chemosphere 371:144073

doi: 10.1016/j.chemosphere.2025.144073
[23]

Li X, Li R, Zhan M, Hou Q, Zhang H, et al. 2024. Combined magnetic biochar and ryegrass enhanced the remediation effect of soils contaminated with multiple heavy metals. Environment International 185:108498

doi: 10.1016/j.envint.2024.108498
[24]

Ouyang W, Huang W, Hao X, Tysklind M, Haglund P, et al. 2017. Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels. Water Research 122:692−700

doi: 10.1016/j.watres.2017.06.084
[25]

Ye Y, Li Y, Cao Z, Liu S, Zhao Y. 2022. Experimental and numerical study on Cu and Cd migration in different functional-area soils under simulated rainfall conditions. Environmental Research 208:112239

doi: 10.1016/j.envres.2021.112239
[26]

Xu C, Tan X, Zhao J, Cao J, Ren M, et al. 2021. Optimization of biochar production based on environmental risk and remediation performance: take kitchen waste for example. Journal of Hazardous Materials 416:125785

doi: 10.1016/j.jhazmat.2021.125785
[27]

Shen X, Huang DY, Ren XF, Zhu HH, Wang S, et al. 2016. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management 168:245−251

doi: 10.1016/j.jenvman.2015.12.019
[28]

Li W, Deng Y, Wang H, Hu Y, Cheng H. 2024. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. Chemosphere 350:140995

doi: 10.1016/j.chemosphere.2023.140995
[29]

Wang QY, Wu MX, Hu NW, Deng BL, Wang TY, et al. 2024. Tracing the vertical migration of exogenous cadmium in soil by seasonal freeze-thaw event using rare earth elements. Science of The Total Environment 946:174147

doi: 10.1016/j.scitotenv.2024.174147
[30]

Zhong X, Chen Z, Li Y, Ding K, Liu W, et al. 2020. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials 400:123289

doi: 10.1016/j.jhazmat.2020.123289
[31]

Huang M, Cui P, Liu C, Sun Q, Wu T, et al. 2025. Overlooked impact of amorphous SiO2 in biochar ash on cadmium behavior during the aging of ferrihydrite-biochar-cadmium coprecipitates. Environmental Science & Technology 59:14685−14694

doi: 10.1021/acs.est.5c04926
[32]

Li Z, Gorski CA, Thompson A, Shallenberger JR, Kaladharan G, et al. 2025. Dissolution kinetics of iron sulfide minerals in alkaline solutions. Cement and Concrete Research 193:107850

doi: 10.1016/j.cemconres.2025.107850
[33]

Liang E, Li J, Li B, Liu S, Ma R, et al. 2023. Roles of dissolved organic matter (DOM) in shaping the distribution pattern of heavy metal in the Yangtze River. Journal of Hazardous Materials 460:132410

doi: 10.1016/j.jhazmat.2023.132410
[34]

Guo X, Peng Y, Li N, Tian Y, Dai L, et al. 2022. Effect of biochar-derived DOM on the interaction between Cu(II) and biochar prepared at different pyrolysis temperatures. Journal of Hazardous Materials 421:126739

doi: 10.1016/j.jhazmat.2021.126739
[35]

Pei S, Zhao Y, Li W, Qu C, Ren Y, et al. 2023. Critical impact of pyrolysis temperatures on biochars for peroxymonosulfate activation: structural characteristics, degradation performance and mechanism. Chemical Engineering Journal 477:147274

doi: 10.1016/j.cej.2023.147274
[36]

Chen T, Luo L, Deng S, Shi G, Zhang S, et al. 2018. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology 267:431−437

doi: 10.1016/j.biortech.2018.07.074
[37]

Luo Y, Wang Z, Zhang YD, Zhang JQ, Zeng QP, et al. 2024. Vertical migration behavior simulation and prediction of Pb and Cd in co-contaminated soil around Pb-Zn smelting slag site. Journal of Hazardous Materials 469:133990

doi: 10.1016/j.jhazmat.2024.133990
[38]

Ding Z, Zhang F, Gong H, Sun N, Huang J, et al. 2021. Responses of phenanthrene degradation to the changes in bioavailability and microbial community structure in soils amended with biochars pyrolyzed at low and high temperatures. Journal of Hazardous Materials 410:124584

doi: 10.1016/j.jhazmat.2020.124584
[39]

Jin BJ, Liu XP, Le Roux X, Bi QF, Li KJ, et al. 2022. Biochar addition regulates soil and earthworm gut microbiome and multifunctionality. Soil Biology and Biochemistry 173:108810

doi: 10.1016/j.soilbio.2022.108810
[40]

Ma H, Wei M, Wang Z, Hou S, Li X, et al. 2020. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. Journal of Hazardous Materials 388:122065

doi: 10.1016/j.jhazmat.2020.122065
[41]

Qi WY, Chen H, Wang Z, Xing SF, Song C, et al. 2023. Biochar-immobilized Bacillus megaterium enhances Cd immobilization in soil and promotes Brassica chinensis growth. Journal of Hazardous Materials 458:131921

doi: 10.1016/j.jhazmat.2023.131921
[42]

Lei C, Lu T, Qian H, Liu Y. 2023. Machine learning models reveal how biochar amendment affects soil microbial communities. Biochar 5:291

doi: 10.1007/s42773-023-00291-1
[43]

Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, et al. 2016. Escherichia coli: an old friend with new tidings. FEMS Microbiology Reviews 40:437−463

doi: 10.1093/femsre/fuw005
[44]

Bian F, Zhong Z, Li C, Zhang X, Gu L, et al. 2021. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Journal of Hazardous Materials 416:125898

doi: 10.1016/j.jhazmat.2021.125898
[45]

Chen X, Zhou L, Tian K, Kumar A, Singh S, et al. 2013. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnology Advances 31:1200−1223

doi: 10.1016/j.biotechadv.2013.02.009
[46]

Zhou G, Chen L, Zhang C, Ma D, Zhang J. 2023. Bacteria–virus interactions are more crucial in soil organic carbon storage than iron protection in biochar-amended paddy soils. Environmental Science & Technology 57:19713−19722

doi: 10.1021/acs.est.3c04398
[47]

Feng J, Yu D, Sinsabaugh RL, Moorhead DL, Andersen MN, et al. 2023. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biological Reviews 98:1184−1199

doi: 10.1111/brv.12949
[48]

Wang C, Kuzyakov Y. 2024. Mechanisms and implications of bacterial–fungal competition for soil resources. The ISME Journal 18:wrae073

doi: 10.1093/ismejo/wrae073
[49]

Yu F, He Z, Xin X, Shi X, Chen L, et al. 2024. Evidence that beneficial microbial inoculation enhances heavy metal-contaminated soil remediation: variations in plant endophyte communities. Journal of Hazardous Materials 480:135883

doi: 10.1016/j.jhazmat.2024.135883
[50]

Wang G, Geng Q, Xu L, Li X, Pan X, et al. 2024. Rice husk biochar resuscitates the microecological functions of heavy–metal contaminated soil after washing by enriching functional bacteria. Journal of Hazardous Materials 480:136430

doi: 10.1016/j.jhazmat.2024.136430
[51]

Wei S, Wang X, Ivshina I, Wang J, Liu X, et al. 2025. Biochar-based microbial agents enhance heavy metals passivation and promote plant growth by recruiting beneficial microorganism. Chemical Engineering Journal 520:165929

doi: 10.1016/j.cej.2025.165929