[1]

Qian L, Wang S, Savage PE. 2020. Fast and isothermal hydrothermal liquefaction of sludge at different severities: reaction products, pathways, and kinetics. Applied Energy 260:114312

doi: 10.1016/j.apenergy.2019.114312
[2]

Vardon DR, Sharma BK, Scott J, Yu G, Wang Z, et al. 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technology 102(17):8295−8303

doi: 10.1016/j.biortech.2011.06.041
[3]

Durak H, Aysu T. 2016. Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. The Journal of Supercritical Fluids 111:179−198

doi: 10.1016/j.supflu.2015.11.021
[4]

Wang W, Yu Q, Meng H, Han W, Li J, et al. 2018. Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent. Bioresource Technology 249:361−367

doi: 10.1016/j.biortech.2017.09.205
[5]

Tong Y, Yang T, Li B, Song H, Kai X, et al. 2023. Transition metal load HZSM-5 catalyst assisted hydrothermal conversion of sewage sludge: nitrogen transformation mechanism and denitrification effectiveness of bio-oil. Journal of the Energy Institute 108:101070

doi: 10.1016/j.joei.2022.05.009
[6]

Long S, Jiang H, Shi J, Ai X, Que Z, et al. 2023. Separated two-stage hydrothermal liquefaction of livestock manure for high-quality bio-oil with low-nitrogen content: insights on nitrogen migration and evolution. Chemical Engineering Journal 477:146999

doi: 10.1016/j.cej.2023.146999
[7]

Costanzo W, Jena U, Hilten R, Das KC, Kastner JR, et al. 2015. Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research-Biomass Biofuels and Bioproducts 12:377−387

doi: 10.1016/j.algal.2015.09.019
[8]

Jazrawi C, Biller P, He Y, Montoya A, Ross AB, et al. 2015. Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Research 8:15−22

doi: 10.1016/j.algal.2014.12.010
[9]

Hao B, Xu D, Wang Y, Wang Y, Kapusta K, et al. 2023. Catalytic hydrothermal liquefaction of municipal sludge for biocrude production over non-noble bimetallic catalyst in ethanol solvent. Fuel 331:125812

doi: 10.1016/j.fuel.2022.125812
[10]

Wu K, Zhang X, Li X, Yuan Q, Liu R. 2023. Investigation of hydrochar properties and bio-oil composition from two-stage hydrothermal treatment of dairy manure. Fuel 339:126945

doi: 10.1016/j.fuel.2022.126945
[11]

Zhou S, Wang Q, Huo X, Zhu X, Huang R, et al. 2023. Speciation evolution and phase migration of phosphorus and nitrogen during subcritical hydrothermal recycling of antibiotic fermentation residue. ACS ES&T Engineering 3(8):1125−1134

doi: 10.1021/acsestengg.2c00425
[12]

Li W, Zhao Y, Yao C, Lu J, Li R, et al. 2020. Migration and transformation of nitrogen during hydrothermal liquefaction of penicillin sludge. The Journal of Supercritical Fluids 157:104714

doi: 10.1016/j.supflu.2019.104714
[13]

Liu H, Chen Y, Yang H, Hu J, Wang X, et al. 2022. Evolution pathway of nitrogen in hydrothermal liquefaction polygeneration of Spirulina as the typical high-protein microalgae. Algal Research-Biomass Biofuels and Bioproducts 66:102759

doi: 10.1016/j.algal.2022.102759
[14]

Tong Y, Yang T, Li B, Kai X, Li R. 2021. Two-stage liquefaction of sewage sludge in methanol-water mixed solvents with low-medium temperature. The Journal of Supercritical Fluids 168:105094

doi: 10.1016/j.supflu.2020.105094
[15]

Zhang B, Chen H, He Z. 2019. Catalytic hydrothermal liquefaction of Spirulina platensis: focusing on aqueous phase characterization. International Journal of Energy Research 43(13):7135−7145

doi: 10.1002/er.4738
[16]

Yang W, Li X, Li Z, Tong C, Feng L. 2015. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Bioresource Technology 196:99−108

doi: 10.1016/j.biortech.2015.07.020
[17]

Li J, Bai X, Fang Y, Chen Y, Wang X, et al. 2020. Comprehensive mechanism of initial stage for lignin pyrolysis. Combustion and Flame 215:1−9

doi: 10.1016/j.combustflame.2020.01.016
[18]

Zhao K, Li W, Yu Y, Chen G, Yan B, et al. 2023. Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production. Renewable Energy 204:661−670

doi: 10.1016/j.renene.2023.01.064
[19]

Xu Y, Liu Z. 2021. Formation mechanism and resource recovery perspectives of aqueous phase from hydrothermal liquefaction of biomass. Progress in Chemistry 33(11):2150−2162

doi: 10.7536/PC210420