[1]

Zecha J, Bayer FP, Wiechmann S, Woortman J, Berner N, et al. 2023. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380:93−101

doi: 10.1126/science.ade3925
[2]

Eckert S, Berner N, Kramer K, Schneider A, Müller J, et al. 2025. Decrypting the molecular basis of cellular drug phenotypes by dose-resolved expression proteomics. Nature Biotechnology 43:406−415

doi: 10.1038/s41587-024-02218-y
[3]

Bayer FP, Gander M, Kuster B, The M. 2023. CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves. Nature Communications 14:7902

doi: 10.1038/s41467-023-43696-z
[4]

Gao Y, Ma M, Li W, Lei X. 2024. Chemoproteomics, a broad avenue to target deconvolution. Advanced Science 11:2305608

doi: 10.1002/advs.202305608
[5]

Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology 25:1035−1044

doi: 10.1038/nbt1328
[6]

Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, et al. 2017. The target landscape of clinical kinase drugs. Science 358:eaan4368

doi: 10.1126/science.aan4368
[7]

Reinecke M, Brear P, Vornholz L, Berger BT, Seefried F, et al. 2024. Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors. Nature Chemical Biology 20:577−585

doi: 10.1038/s41589-023-01459-3
[8]

Lechner S, Malgapo MIP, Grätz C, Steimbach RR, Baron A, et al. 2022. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology 18:812−820

doi: 10.1038/s41589-022-01015-5
[9]

Kuljanin M, Mitchell DC, Schweppe DK, Gikandi AS, Nusinow DP, et al. 2021. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nature Biotechnology 39:630−641

doi: 10.1038/s41587-020-00778-3
[10]

Yang K, Whitehouse RL, Dawson SL, Zhang L, Martin JG, et al. 2024. Accelerating multiplexed profiling of protein-ligand interactions: high-throughput plate-based reactive cysteine profiling with minimal input. Cell Chemical Biology 31:565−576.e4

doi: 10.1016/j.chembiol.2023.11.015
[11]

Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, et al. 2017. Global profiling of lysine reactivity and ligandability in the human proteome. Nature Chemistry 9:1181−1190

doi: 10.1038/nchem.2826
[12]

Prokofeva P, Höfer S, Hornisch M, Abele M, Kuster B, et al. 2022. Merits of diazirine photo-immobilization for target profiling of natural products and cofactors. ACS Chemical Biology 17:3100−3109

doi: 10.1021/acschembio.2c00500
[13]

Thomas JR, Brittain SM, Lipps J, Llamas L, Jain RK, et al. 2017. A photoaffinity labeling-based chemoproteomics strategy for unbiased target deconvolution of small molecule drug candidates. In Proteomics for Drug Discovery. Methods in Molecular Biology, Vol. 1647. eds. Lazar I, Kontoyianni M, Lazar A. New York, NY: Humana Press. pp. 1−18 doi: 10.1007/978-1-4939-7201-2_1

[14]

Trendel J, Trendel S, Sha S, Greulich F, Goll S, et al. 2025. The human proteome with direct physical access to DNA. Cell 188:4424−4440.e17

doi: 10.1016/j.cell.2025.04.037
[15]

Lechner S, Steimbach RR, Wang L, Deline ML, Chang YC, et al. 2023. Chemoproteomic target deconvolution reveals histone deacetylases as targets of (R)-lipoic acid. Nature Communications 14:3548

doi: 10.1038/s41467-023-39151-8
[16]

George AL, Dueñas ME, Marín-Rubio JL, Trost M. 2024. Stability-based approaches in chemoproteomics. Expert Reviews in Molecular Medicine 26:e6

doi: 10.1017/erm.2024.6
[17]

George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, et al. 2023. Comparison of quantitative mass spectrometric methods for drug target identification by thermal proteome profiling. Journal of Proteome Research 22:2629−2640

doi: 10.1021/acs.jproteome.3c00111
[18]

Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF, et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784

doi: 10.1126/science.1255784
[19]

Ruan C, Wang Y, Zhang X, Lyu J, Zhang N, et al. 2022. Matrix thermal shift assay for fast construction of multidimensional ligand−target space. Analytical Chemistry 94:6482−6490

doi: 10.1021/acs.analchem.1c04627
[20]

Gaetani M, Sabatier P, Saei AA, Beusch CM, Yang Z, et al. 2019. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. Journal of Proteome Research 18:4027−4037

doi: 10.1021/acs.jproteome.9b00500
[21]

Wang G, Ma S, Song H, Liang Y, Li X, et al. 2025. A chemoproteomic approach for system-wide and site-specific uncovering of functional protein N-glycosylation. Journal of the American Chemical Society 147:24127−24139

doi: 10.1021/jacs.5c08065
[22]

Bizzarri L, Steinbrunn D, Quennesson T, Lacour A, Bianchino GI, et al. 2024. Studying target-engagement of anti-infectives by solvent-induced protein precipitation and quantitative mass spectrometry. ACS Infectious Diseases 10:4087−4102

doi: 10.1021/acsinfecdis.4c00417
[23]

Van Vranken JG, Li J, Mitchell DC, Navarrete-Perea J, Gygi SP. 2021. Assessing target engagement using proteome-wide solvent shift assays. eLife 10:e70784

doi: 10.7554/elife.70784
[24]

Zhang X, Wang Q, Li Y, Ruan C, Wang S, et al. 2020. Solvent-induced protein precipitation for drug target discovery on the proteomic scale. Analytical Chemistry 92:1363−1371

doi: 10.1021/acs.analchem.9b04531
[25]

Strickland EC, Geer MA, Tran DT, Adhikari J, West GM, et al. 2013. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nature Protocols 8:148−161

doi: 10.1038/nprot.2012.146
[26]

Beusch CM, Sabatier P, Zubarev RA. 2022. Ion-based proteome-integrated solubility alteration assays for systemwide profiling of protein−molecule interactions. Analytical Chemistry 94:7066−7074

doi: 10.1021/acs.analchem.2c00391
[27]

Zhang X, Wang K, Wu S, Ruan C, Li K, et al. 2022. Highly effective identification of drug targets at the proteome level by pH-dependent protein precipitation. Chemical Science 13:12403−12418

doi: 10.1039/D2SC03326G
[28]

Seashore-Ludlow B, Axelsson H, Lundbäck T. 2020. Perspective on CETSA literature: toward more quantitative data interpretation. SLAS Discovery 25:118−126

doi: 10.1177/2472555219884524
[29]

Becher I, Werner T, Doce C, Zaal EA, Tögel I, et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nature Chemical Biology 12:908−910

doi: 10.1038/nchembio.2185
[30]

Bravo P, Diamanti E, Hamed MM, Bizzarri L, Wiedemar N, et al. 2025. A novel antimalarial agent that inhibits protein synthesis in Plasmodium falciparum. Angewandte Chemie International Edition 64:e202514085

doi: 10.1002/anie.202514085
[31]

Schopper S, Kahraman A, Leuenberger P, Feng Y, Piazza I, et al. 2017. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nature Protocols 12:2391−2410

doi: 10.1038/nprot.2017.100
[32]

Li K, Chen S, Wang K, Wang Y, Xue L, et al. 2025. A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands. Nature Methods 22:278−282

doi: 10.1038/s41592-024-02553-7
[33]

Koudelka T, Bassot C, Piazza I. 2025. Benchmarking of quantitative proteomics workflows for limited proteolysis mass spectrometry. Molecular & Cellular Proteomics 24:100945

doi: 10.1016/j.mcpro.2025.100945
[34]

Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, et al. 2023. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613:759−766

doi: 10.1038/s41586-022-05575-3
[35]

Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, et al. 2024. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 384:eadk0850

doi: 10.1126/science.adk0850
[36]

Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, et al. 2020. The functional landscape of the human phosphoproteome. Nature Biotechnology 38:365−373

doi: 10.1038/s41587-019-0344-3
[37]

Budayeva HG, Sengupta-Ghosh A, Phu L, Moffat JG, Ayalon G, et al. 2022. Phosphoproteome profiling of the receptor tyrosine kinase MuSK identifies tyrosine phosphorylation of Rab GTPases. Molecular & Cellular Proteomics 21:100221

doi: 10.1016/j.mcpro.2022.100221
[38]

Höfer S, Frasch L, Brajkovic S, Putzker K, Lewis J, et al. 2025. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. Molecular Systems Biology 21:231−253

doi: 10.1038/s44320-025-00085-6
[39]

Kabella N, Bayer FP, Stamatiou K, Abele M, Sakhteman A, et al. 2025. Proteomic analyses identify targets, pathways, and cellular consequences of oncogenic KRAS signaling. Science Signaling 18:eadt6552

doi: 10.1126/scisignal.adt6552
[40]

Chang YC, Gnann C, Steimbach RR, Bayer FP, Lechner S, et al. 2024. Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics. Cell Reports 43:114272

doi: 10.1016/j.celrep.2024.114272
[41]

Chu E, Takimoto CH, Voeller D, Grem JL, Allegra CJ. 1993. Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 32:4756−4760

doi: 10.1021/bi00069a009
[42]

Li Y, Zhang Z, Jiang S, Xu F, Tulum L, et al. 2023. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. Chemosphere 313:137359

doi: 10.1016/j.chemosphere.2022.137359
[43]

Calabrese EJ, Blain RB. 2011. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regulatory Toxicology and Pharmacology 61:73−81

doi: 10.1016/j.yrtph.2011.06.003
[44]

Rüegger J, Gagestein B, Janssen APA, Valeanu A, Mori AL, et al. 2025. CellEKT: a robust chemical proteomics workflow to profile cellular target engagement of kinase inhibitors. Molecular & Cellular Proteomics 24:100961

doi: 10.1016/j.mcpro.2025.100961
[45]

Glocker UM, Braun F, Eberl HC, Bantscheff M. 2025. A probe-based target engagement assay for kinases in live cells. Molecular & Cellular Proteomics 24:100963

doi: 10.1016/j.mcpro.2025.100963
[46]

Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, et al. 2011. In situ kinase profiling reveals functionally relevant properties of native kinases. Chemistry & Biology 18:699−710

doi: 10.1016/j.chembiol.2011.04.011
[47]

Biggs GS, Cawood EE, Vuorinen A, McCarthy WJ, Wilders H, et al. 2025. Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics. Nature Communications 16:73

doi: 10.1038/s41467-024-55057-5
[48]

Tian Y, Wan N, Zhang H, Shao C, Ding M, et al. 2023. Chemoproteomic mapping of the glycolytic targetome in cancer cells. Nature Chemical Biology 19:1480−1491

doi: 10.1038/s41589-023-01355-w
[49]

Piazza I, Beaton N, Bruderer R, Knobloch T, Barbisan C, et al. 2020. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nature Communications 11:4200

doi: 10.1038/s41467-020-18071-x
[50]

Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, et al. 2015. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discovery 5:1210−1223

doi: 10.1158/2159-8290.CD-15-0235