| [1] |
Zecha J, Bayer FP, Wiechmann S, Woortman J, Berner N, et al. 2023. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. |
| [2] |
Eckert S, Berner N, Kramer K, Schneider A, Müller J, et al. 2025. Decrypting the molecular basis of cellular drug phenotypes by dose-resolved expression proteomics. |
| [3] |
Bayer FP, Gander M, Kuster B, The M. 2023. CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves. |
| [4] |
Gao Y, Ma M, Li W, Lei X. 2024. Chemoproteomics, a broad avenue to target deconvolution. |
| [5] |
Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. |
| [6] |
Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, et al. 2017. The target landscape of clinical kinase drugs. |
| [7] |
Reinecke M, Brear P, Vornholz L, Berger BT, Seefried F, et al. 2024. Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors. |
| [8] |
Lechner S, Malgapo MIP, Grätz C, Steimbach RR, Baron A, et al. 2022. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. |
| [9] |
Kuljanin M, Mitchell DC, Schweppe DK, Gikandi AS, Nusinow DP, et al. 2021. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. |
| [10] |
Yang K, Whitehouse RL, Dawson SL, Zhang L, Martin JG, et al. 2024. Accelerating multiplexed profiling of protein-ligand interactions: high-throughput plate-based reactive cysteine profiling with minimal input. |
| [11] |
Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, et al. 2017. Global profiling of lysine reactivity and ligandability in the human proteome. |
| [12] |
Prokofeva P, Höfer S, Hornisch M, Abele M, Kuster B, et al. 2022. Merits of diazirine photo-immobilization for target profiling of natural products and cofactors. |
| [13] |
Thomas JR, Brittain SM, Lipps J, Llamas L, Jain RK, et al. 2017. A photoaffinity labeling-based chemoproteomics strategy for unbiased target deconvolution of small molecule drug candidates. In Proteomics for Drug Discovery. Methods in Molecular Biology, Vol. 1647. eds. Lazar I, Kontoyianni M, Lazar A. New York, NY: Humana Press. pp. 1−18 doi: 10.1007/978-1-4939-7201-2_1 |
| [14] |
Trendel J, Trendel S, Sha S, Greulich F, Goll S, et al. 2025. The human proteome with direct physical access to DNA. |
| [15] |
Lechner S, Steimbach RR, Wang L, Deline ML, Chang YC, et al. 2023. Chemoproteomic target deconvolution reveals histone deacetylases as targets of (R)-lipoic acid. |
| [16] |
George AL, Dueñas ME, Marín-Rubio JL, Trost M. 2024. Stability-based approaches in chemoproteomics. |
| [17] |
George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, et al. 2023. Comparison of quantitative mass spectrometric methods for drug target identification by thermal proteome profiling. |
| [18] |
Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF, et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. |
| [19] |
Ruan C, Wang Y, Zhang X, Lyu J, Zhang N, et al. 2022. Matrix thermal shift assay for fast construction of multidimensional ligand−target space. |
| [20] |
Gaetani M, Sabatier P, Saei AA, Beusch CM, Yang Z, et al. 2019. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. |
| [21] |
Wang G, Ma S, Song H, Liang Y, Li X, et al. 2025. A chemoproteomic approach for system-wide and site-specific uncovering of functional protein N-glycosylation. |
| [22] |
Bizzarri L, Steinbrunn D, Quennesson T, Lacour A, Bianchino GI, et al. 2024. Studying target-engagement of anti-infectives by solvent-induced protein precipitation and quantitative mass spectrometry. |
| [23] |
Van Vranken JG, Li J, Mitchell DC, Navarrete-Perea J, Gygi SP. 2021. Assessing target engagement using proteome-wide solvent shift assays. |
| [24] |
Zhang X, Wang Q, Li Y, Ruan C, Wang S, et al. 2020. Solvent-induced protein precipitation for drug target discovery on the proteomic scale. |
| [25] |
Strickland EC, Geer MA, Tran DT, Adhikari J, West GM, et al. 2013. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. |
| [26] |
Beusch CM, Sabatier P, Zubarev RA. 2022. Ion-based proteome-integrated solubility alteration assays for systemwide profiling of protein−molecule interactions. |
| [27] |
Zhang X, Wang K, Wu S, Ruan C, Li K, et al. 2022. Highly effective identification of drug targets at the proteome level by pH-dependent protein precipitation. |
| [28] |
Seashore-Ludlow B, Axelsson H, Lundbäck T. 2020. Perspective on CETSA literature: toward more quantitative data interpretation. |
| [29] |
Becher I, Werner T, Doce C, Zaal EA, Tögel I, et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. |
| [30] |
Bravo P, Diamanti E, Hamed MM, Bizzarri L, Wiedemar N, et al. 2025. A novel antimalarial agent that inhibits protein synthesis in Plasmodium falciparum. |
| [31] |
Schopper S, Kahraman A, Leuenberger P, Feng Y, Piazza I, et al. 2017. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. |
| [32] |
Li K, Chen S, Wang K, Wang Y, Xue L, et al. 2025. A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands. |
| [33] |
Koudelka T, Bassot C, Piazza I. 2025. Benchmarking of quantitative proteomics workflows for limited proteolysis mass spectrometry. |
| [34] |
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, et al. 2023. An atlas of substrate specificities for the human serine/threonine kinome. |
| [35] |
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, et al. 2024. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. |
| [36] |
Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, et al. 2020. The functional landscape of the human phosphoproteome. |
| [37] |
Budayeva HG, Sengupta-Ghosh A, Phu L, Moffat JG, Ayalon G, et al. 2022. Phosphoproteome profiling of the receptor tyrosine kinase MuSK identifies tyrosine phosphorylation of Rab GTPases. |
| [38] |
Höfer S, Frasch L, Brajkovic S, Putzker K, Lewis J, et al. 2025. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. |
| [39] |
Kabella N, Bayer FP, Stamatiou K, Abele M, Sakhteman A, et al. 2025. Proteomic analyses identify targets, pathways, and cellular consequences of oncogenic KRAS signaling. |
| [40] |
Chang YC, Gnann C, Steimbach RR, Bayer FP, Lechner S, et al. 2024. Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics. |
| [41] |
Chu E, Takimoto CH, Voeller D, Grem JL, Allegra CJ. 1993. Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. |
| [42] |
Li Y, Zhang Z, Jiang S, Xu F, Tulum L, et al. 2023. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. |
| [43] |
Calabrese EJ, Blain RB. 2011. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. |
| [44] |
Rüegger J, Gagestein B, Janssen APA, Valeanu A, Mori AL, et al. 2025. CellEKT: a robust chemical proteomics workflow to profile cellular target engagement of kinase inhibitors. |
| [45] |
Glocker UM, Braun F, Eberl HC, Bantscheff M. 2025. A probe-based target engagement assay for kinases in live cells. |
| [46] |
Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, et al. 2011. In situ kinase profiling reveals functionally relevant properties of native kinases. |
| [47] |
Biggs GS, Cawood EE, Vuorinen A, McCarthy WJ, Wilders H, et al. 2025. Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics. |
| [48] |
Tian Y, Wan N, Zhang H, Shao C, Ding M, et al. 2023. Chemoproteomic mapping of the glycolytic targetome in cancer cells. |
| [49] |
Piazza I, Beaton N, Bruderer R, Knobloch T, Barbisan C, et al. 2020. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. |
| [50] |
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, et al. 2015. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. |