[1]

Chen X, Liu Z, Chen W, Yang H, Chen H. 2022. Catalytic pyrolysis of cotton stalk to produce aromatic hydrocarbons over Fe modified CaO catalysts and ZSM-5. Journal of Analytical and Applied Pyrolysis 166:105635

doi: 10.1016/j.jaap.2022.105635
[2]

Dong Q, Niu M, Bi D, Liu W, Gu X, et al. 2018. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresource Technology 256:145−151

doi: 10.1016/j.biortech.2018.02.018
[3]

Zhang Z, Huang K, Mao C, Huang J, Xu Q, et al. 2022. Microwave assisted catalytic pyrolysis of bagasse to produce hydrogen. International Journal of Hydrogen Energy 47:35626−35634

doi: 10.1016/j.ijhydene.2022.08.162
[4]

Kouhi M, Shams K. 2019. Bulk features of catalytic co-pyrolysis of sugarcane bagasse and a hydrogen-rich waste: the case of waste heavy paraffin. Renewable Energy 140:970−982

doi: 10.1016/j.renene.2019.03.115
[5]

Vandenberghe LPS, Valladares-Diestra KK, Bittencourt GA, Zevallos Torres LA, Vieira S, et al. 2022. Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renewable and Sustainable Energy Reviews 167:112721

doi: 10.1016/j.rser.2022.112721
[6]

Manzini Poli FL, Islas-Samperio JM, García Bustamante CA, Sacramento Rivero JC, Grande-Acosta GK, et al. 2022. Sustainability assessment of solid biofuels from agro-industrial residues case of sugarcane bagasse in a Mexican sugar mill. Sustainability 14:1711

doi: 10.3390/su14031711
[7]

Li Z, Zhong Z, Zhang B, Wang W, Zhao H, et al. 2021. Parametric study of the catalytic fast pyrolysis of rice husk over hierarchical micro-mesoporous composite catalyst in a microwave-heated fluidized bed. Journal of Analytical and Applied Pyrolysis 157:105210

doi: 10.1016/j.jaap.2021.105210
[8]

Ma Y, Wang W, Miao H, Han S, Fu Y, et al. 2024. Physicochemical synergistic effect of microwave-assisted co-pyrolysis of biomass and waste plastics by thermal degradation, thermodynamics, numerical simulation, kinetics, and products analysis. Renewable Energy 223:120026

doi: 10.1016/j.renene.2024.120026
[9]

Lee XJ, Ong HC, Gan YY, Chen WH, Mahlia TMI. 2020. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Conversion and Management 210:112707

doi: 10.1016/j.enconman.2020.112707
[10]

Pan CP, Chen C, Huang QX, Chi Y. 2012. Experimental study on influence of CaO addition on tar generation during biomass pyrolysis. Thermoelectric Power Generator 41:18−23 (in Chinese)

doi: 10.3969/j.issn.1002-3364.2012.08.018
[11]

Jordan CA, Akay G. 2013. Effect of CaO on tar production and dew point depression during gasification of fuel cane bagasse in a novel downdraft gasifier. Fuel Processing Technology 106:654−660

doi: 10.1016/j.fuproc.2012.09.061
[12]

Mishra R, Shu CM, Gollakota ARK, Pan SY. 2024. Unveiling the potential of pyrolysis-gasification for hydrogen-rich syngas production from biomass and plastic waste. Energy Conversion and Management 321:118997

doi: 10.1016/j.enconman.2024.118997
[13]

Ferreira AF, Soares Dias AP. 2020. Pyrolysis of microalgae biomass over carbonate catalysts. Journal of Chemical Technology and Biotechnology 95:3270−3279

doi: 10.1002/jctb.6506
[14]

Al-asadi M, Miskolczi N. 2021. Hydrogen rich products from waste HDPE/LDPE/PP/PET over Me/Ni-ZSM-5 catalysts combined with dolomite. Journal of the Energy Institute 96:251−259

doi: 10.1016/j.joei.2021.03.004
[15]

Bunma T, Kuchonthara P. 2018. Synergistic study between CaO and MgO sorbents for hydrogen rich gas production from the pyrolysis-gasification of sugarcane leaves. Process Safety and Environmental Protection 118:188−194

doi: 10.1016/j.psep.2018.06.034
[16]

Hu Y, Ma X, Yu Z, Zhang X, Yue W, et al. 2024. NiO–Ca9Co12O28 bifunctional phase change catalysts for biomass pyrolysis to hydrogen-rich syngas. International Journal of Hydrogen Energy 72:412−421

doi: 10.1016/j.ijhydene.2024.05.385
[17]

Liu H, Wu J, Shen Y, Ding J, Cong H, et al. 2025. Catalytic steam reforming of rice husk pyrolysis vapors: hydrogen production promoted by using Fe/K doped biochar as catalyst. International Journal of Hydrogen Energy 99:607−618

doi: 10.1016/j.ijhydene.2024.11.302
[18]

Zhang S, Dong Y, Qi G. 2023. TG-GC-MS study of pyrolysis characteristics and kinetic analysis during different kinds of biomass. International Journal of Hydrogen Energy 48:11171−11179

doi: 10.1016/j.ijhydene.2022.11.333
[19]

Wang Z, Liang D, Li X, Huang H, He X, et al. 2025. Catalytic fast co-pyrolysis of lignocellulosic biomass and polypropylene over bimetallic catalysts to promote the formation of hydrocarbons. Journal of Analytical and Applied Pyrolysis 191:107199

doi: 10.1016/j.jaap.2025.107199
[20]

Berthold EES, Deng W, Zhou J, Bertrand AME, Xu J, et al. 2023. Impact of plastic type on synergistic effects during co-pyrolysis of rice husk and plastics. Energy 281:128270

doi: 10.1016/j.energy.2023.128270
[21]

So/rensen MR, Voter AF. 2000. Temperature-accelerated dynamics for simulation of infrequent events. The Journal of Chemical Physics 112:9599−9606

doi: 10.1063/1.481576
[22]

Du J, Dou B, Zhang H, Wu K, Gao D, et al. 2023. Non-isothermal kinetics of biomass waste pyrolysis by TG-MS/DSC. Carbon Capture Science & Technology 6:100097

doi: 10.1016/j.ccst.2023.100097
[23]

Rathi N, Das T. 2025. Exploring biomass pyrolysis for sustainable hydrogen-rich gas production. Biomass and Bioenergy 202:108162−108162

doi: 10.1016/j.biombioe.2025.108162
[24]

Peng Y, Zhang Y, Liu C, Ullah F, Ji G, et al. 2025. Multi-algorithm synergy in biomass pyrolysis via TG-FTIR-GC/MS: kinetic triplet resolution with particle swarm optimization (PSO) and the specific product evolution. Journal of the Energy Institute 121:102180

doi: 10.1016/j.joei.2025.102180
[25]

Lu Q, Zhang ZF, Dong CQ, Zhu XF. 2010. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies 3:1805−1820

doi: 10.3390/en3111805
[26]

Si T, Huang K, Lin Y, Gu M. 2019. ReaxFF study on the effect of CaO on cellulose pyrolysis. Energy Fuels 33:11067−11077

doi: 10.1021/acs.energyfuels.9b02583
[27]

Niksa S. 2021. Bio-FLASHCHAIN® theory for rapid devolatilization of biomass. 4. V. 2.0 decomposition mechanism for mineral-free cellulose. Fuel 306:121726

doi: 10.1016/j.fuel.2021.121726
[28]

Torres-Herrador F, Leroy V, Helber B, Contat-Rodrigo L, Lachaud J, et al. 2020. Multicomponent pyrolysis model for thermogravimetric analysis of phenolic ablators and lignocellulosic biomass. AIAA Journal 58:4081−4089

doi: 10.2514/1.J059423
[29]

Qiu S, Chen C, Wan S, Ling H, Wei Y, et al. 2023. Microwave catalytic co-pyrolysis of sugarcane bagasse and Chlorella vulgaris over metal modified bio-chars: characteristics and bio-oil analysis. Journal of Environmental Chemical Engineering 11:110917

doi: 10.1016/j.jece.2023.110917
[30]

Zhao X, Qiu S, Jiang M, Chen C, He S. 2025. Microwave catalytic co-pyrolysis of sugarcane bagasse and Chlorella vulgaris over composite catalyst: characteristics and bio-oil analysis. Journal of Analytical and Applied Pyrolysis 187:107008

doi: 10.1016/j.jaap.2025.107008
[31]

Ellison CR, Boldor D. 2021. Mild upgrading of biomass pyrolysis vapors via ex-situ catalytic pyrolysis over an iron-montmorillonite catalyst. Fuel 291:120226

doi: 10.1016/j.fuel.2021.120226
[32]

Mahadevan R, Adhikari S, Shakya R, Fasina O. 2021. Influence of biomass inorganics on the functionality of H+ZSM-5 catalyst during in-situ catalytic fast pyrolysis. Catalysts 11:124

doi: 10.3390/catal11010124
[33]

Valin S, Cances J, Castelli P, Thiery S, Dufour A, et al. 2009. Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling. Fuel 88:834−842

doi: 10.1016/j.fuel.2008.11.033
[34]

Al Arni S. 2018. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy 124:197−201

doi: 10.1016/j.renene.2017.04.060
[35]

Kuan WH, Huang YF, Chang CC, Lo SL. 2013. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresource Technology 146:324−329

doi: 10.1016/j.biortech.2013.07.079
[36]

Zeng K, Yan H, Xia H, Zhang L, Zhang Q. 2021. Catalytic pyrolysis of Eupatorium adenophorum by sodium salt. Journal of Material Cycles and Waste Management 23:1626−1635

doi: 10.1007/s10163-021-01244-1
[37]

Fodah AEM, Abdelwahab TAM, Wang X, Tang Z, Liu X, et al. 2025. Enhancing hydrocarbon-rich bio-oil by microwave catalytic co-pyrolysis of sugarcane bagasse and digestate from anaerobic digestion of poultry litter. Journal of Analytical and Applied Pyrolysis 192:107284

doi: 10.1016/j.jaap.2025.107284
[38]

Waheed QMK, Williams PT. 2013. Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: rice husk, sugar cane bagasse, and wheat straw. Energy & Fuels 27:6695−6704

doi: 10.1021/ef401145w
[39]

Li B, Yang H, Liu B, Wei L, Shao J, et al. 2017. Influence of addition of a high amount of calcium oxide on the yields of pyrolysis products and noncondensable gas evolving during corn stalk pyrolysis. Energy Fuels 31:13705−13712

doi: 10.1021/acs.energyfuels.7b02516
[40]

Park WC, Atreya A, Baum HR. 2010. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combustion and Flame 157:481−494

doi: 10.1016/j.combustflame.2009.10.006
[41]

Iftikhar H, Zeeshan M, Iqbal S, Muneer B, Razzaq M. 2019. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresource Technology 289:121647

doi: 10.1016/j.biortech.2019.121647
[42]

Tiwari M, Vinu R. 2025. In situ and ex situ catalytic microwave pyrolysis of biomass pellets using Ni/Al2O3 for hydrogen and bio-oil production. Journal of Analytical and Applied Pyrolysis 189:107044

doi: 10.1016/j.jaap.2025.107044
[43]

Hu G, Zhang Q, Yan Y, Xue Y, Ma F, et al. 2025. Study on the degradation of gelled tributyl phosphate combined with DFT calculations in a ternary Li2CO3-Na2CO3-K2CO3 molten salt system. Journal of Hazardous Materials 490:137802

doi: 10.1016/j.jhazmat.2025.137802
[44]

Wang Z, Liu C, Ouyang J, Xue B, Xu J, et al. 2025. Po-rous carbon materials derived from rice husk pyrolysis with NaCl/Na2CO3 binary molten salt for CO2 capture. Industrial Crops and Products 227:120808

doi: 10.1016/j.indcrop.2025.120808