[1]

Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, et al. 2014. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science & Technology Letters 1:339−344

doi: 10.1021/ez5002209
[2]

Buss W, Wurzer C, Manning DAC, Rohling EJ, Borevitz J, et al. 2022. Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Communications Earth & Environment 3:67

doi: 10.1038/s43247-022-00394-w
[3]

Deng X, Teng F, Chen M, Du Z, Wang B, et al. 2024. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nature Communications 15:1085

doi: 10.1038/s41467-024-45314-y
[4]

Palansooriya KN, Li J, Dissanayake PD, Suvarna M, Li L, et al. 2022. Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology 56:4187−4198

doi: 10.1021/acs.est.1c08302
[5]

Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, et al. 2022. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology 56:16546−16566

doi: 10.1021/acs.est.2c02976
[6]

Mazzurco-Miritana V, Passatore L, Zacchini M, Pietrini F, Peruzzi E, et al. 2025. Promoting the remediation of contaminated soils using biochar in combination with bioaugmentation and phytoremediation techniques. Scientific Reports 15:11231

doi: 10.1038/s41598-025-93879-5
[7]

Teng X, Huang D, Zhi Y, Li Y, Dong D, et al. 2025. Effects of biochar on soil properties as well as available and TCLP-extractable Cu contents: a global meta-analysis. Scientific Reports 15:32853

doi: 10.1038/s41598-025-18170-z
[8]

He M, Xu Z, Hou D, Gao B, Cao X, et al. 2022. Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment 3:444−460

doi: 10.1038/s43017-022-00306-8
[9]

Yuan X, Wang J, Deng S, Dissanayake PD, Wang S, et al. 2022. Sustainable food waste management: synthesizing engineered biochar for CO2 capture. ACS Sustainable Chemistry & Engineering 10:13026−13036

doi: 10.1021/acssuschemeng.2c03029
[10]

Aminzai MT, Yabalak E. 2025. Advanced polymeric membranes for environmental remediation: emerging roles of hydrochar and biochar composites. Journal of Materials Science 60:18710−18733

doi: 10.1007/s10853-025-11508-y
[11]

Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, et al. 2014. Promoting interspecies electron transfer with biochar. Scientific Reports 4:5019

doi: 10.1038/srep05019
[12]

Liang D, Liu X, Woodard TL, Holmes DE, Smith JA, et al. 2021. Extracellular electron exchange capabilities of Desulfovibrio ferrophilus and Desulfopila corrodens. Environmental Science & Technology 55:16195−16203

doi: 10.1021/acs.est.1c04071
[13]

An T, Chang Y, Xie J, Tang K, Liu Y, et al. 2023. Rapid start-up and long-term stability of anammox with magnetic biochar addition: performance improvement, microbial community, and potential mechanisms. ACS ES&T Engineering 3:2097−2108

doi: 10.1021/acsestengg.3c00361
[14]

Ringsby AJ, Ross CM, Maher K. 2024. Sorption of soil carbon dioxide by biochar and engineered porous carbons. Environmental Science & Technology 58:8313−8325

doi: 10.1021/acs.est.4c02015
[15]

Fu S, Li M, de Jong W, Kortlever R. 2023. Tuning the properties of N-doped biochar for selective CO2 electroreduction to CO. ACS Catalysis 13:10309−10323

doi: 10.1021/acscatal.3c01773
[16]

Schievano A, Berenguer R, Goglio A, Bocchi S, Marzorati S, et al. 2019. Electroactive biochar for large-scale environmental applications of microbial electrochemistry. ACS Sustainable Chemistry & Engineering 7:18198−18212

doi: 10.1021/acssuschemeng.9b04229
[17]

Weng ZH, Cowie AL. 2025. Estimates vary but credible evidence points to gigaton-scale climate change mitigation potential of biochar. Communications Earth & Environment 6:259

doi: 10.1038/s43247-025-02228-x
[18]

Sun T, Levin BDA, Schmidt MP, Guzman JJL, Enders A, et al. 2018. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environmental Science & Technology 52:8538−8547

doi: 10.1021/acs.est.8b02340
[19]

Prévoteau A, Ronsse F, Cid I, Boeckx P, Rabaey K. 2016. The electron donating capacity of biochar is dramatically underestimated. Scientific Reports 6:32870

doi: 10.1038/srep32870
[20]

Zhao N, Liu Y, Zhang Y, Li Z. 2022. Pyrogenic carbon facilitated microbial extracellular electron transfer in electrogenic granular sludge via geobattery mechanism. Water Research 220:118618

doi: 10.1016/j.watres.2022.118618
[21]

Ren S, Usman M, Tsang DCW, O-Thong S, Angelidaki I, et al. 2020. Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environmental Science & Technology 54:5755−5766

doi: 10.1021/acs.est.0c00112
[22]

Wang Y, Tian L, Zheng J, Tan Y, Li Y, et al. 2024. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: a sustainable solution. Water Research 267:122551

doi: 10.1016/j.watres.2024.122551
[23]

Zheng X, Yan G, Wang X, Lam KL. 2024. Identifying life cycle environmental hotspots in phosphorus recovery from wastewater using modified biochars. ACS Sustainable Chemistry & Engineering 12:17319−17327

doi: 10.1021/acssuschemeng.4c07048
[24]

Fan Y, Sun S, Gu X, Yan P, Zhang Y, et al. 2025. Tracing the electron transfer behavior driven by hydrophyte-derived carbon materials empowered autotrophic denitrification in iron-based constructed wetlands: efficacy and enhancement mechanism. Water Research 275:123169

doi: 10.1016/j.watres.2025.123169
[25]

Zhou W, Chen H, Cui X, Cui D, Cao Q. 2025. The impact of biochar and activated carbon on the purification efficiency of two wetland systems under varying pollution loads. Scientific Reports 15:19927

doi: 10.1038/s41598-025-04848-x
[26]

Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, et al. 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3:1732

doi: 10.1038/srep01732
[27]

Chen X, Alvarez PJJ, Masiello CA. 2025. Environmentally persistent free radicals in biochar: environmental context and future research needs. Environmental Science & Technology 59:11440−11454

doi: 10.1021/acs.est.4c13603
[28]

Liu X, Liu X, Gao S. 2024. The electrochemical mechanism of biochar for mediating the product ratio of N2O/(N2O + N2) in the denitrification process. Science of The Total Environment 951:175566

doi: 10.1016/j.scitotenv.2024.175566
[29]

Shi Y, Pang B, Jia Y, Zheng Z, Quan H, et al. 2026. Enhancing nitrogen removal in low C/N wastewater via carbon resource recovery from biochar-mediated anaerobic digestion of discarded cefradine residues. Water Research 288:124641

doi: 10.1016/j.watres.2025.124641
[30]

Liu L, Zhang C, Chen S, Ma L, Li Y, et al. 2022. Phosphate adsorption characteristics of La(OH)3-modified, Canna-derived biochar. Chemosphere 286:131773

doi: 10.1016/j.chemosphere.2021.131773
[31]

An X, Wu Z, Yu J, Ge L, Li T, et al. 2020. High-efficiency reclaiming phosphate from an aqueous solution by bentonite modified biochars: a slow release fertilizer with a precise rate regulation. ACS Sustainable Chemistry & Engineering 8:6090−6099

doi: 10.1021/acssuschemeng.0c01112
[32]

Luo H, Wan Y, Cai Y, Dang Z, Yin H. 2022. Enhanced phosphate adsorption by Mg-stirred leaf biochar in a complex water matrix via active MgO facet exposure. ACS ES&T Engineering 2:2254−2265

doi: 10.1021/acsestengg.2c00212
[33]

Zhang X, Xiong Y, Wang X, Wen Z, Xu X, et al. 2024. MgO-modified biochar by modifying hydroxyl and amino groups for selective phosphate removal: insight into phosphate selectivity adsorption mechanism through experimental and theoretical. Science of The Total Environment 918:170571

doi: 10.1016/j.scitotenv.2024.170571
[34]

Fang J, Wang D, Wilkin R, Su C. 2025. Realistic and field scale applications of biochar for water remediation: a literature review. Journal of Environmental Management 385:125524

doi: 10.1016/j.jenvman.2025.125524
[35]

Ge X, Wang L, Zhang W, Putnis CV. 2020. Molecular understanding of humic acid-limited phosphate precipitation and transformation. Environmental Science & Technology 54:207−215

doi: 10.1021/acs.est.9b05145
[36]

Zhao L, Cao X, Mašek O, Zimmerman A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256-257:1−9

doi: 10.1016/j.jhazmat.2013.04.015
[37]

Kumari S, Dong Y, Safferman SI. 2025. Phosphorus adsorption and recovery from waste streams using biochar: review of mechanisms, modifications, and agricultural applications. Applied Water Science 15:162

doi: 10.1007/s13201-025-02523-0
[38]

Yao Y, Gao B, Chen J, Yang L. 2013. Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology 47:8700−8708

doi: 10.1021/es4012977
[39]

Lin Y, Chen Q, Li SFY, Huang K, Wang Q, et al. 2026. Calcium modification in food waste digestate derived granular biochar: unveiling synergistic mechanisms for phosphorus recovery. Separation and Purification Technology 380:135513

doi: 10.1016/j.seppur.2025.135513
[40]

Zhao Z, Li Y, Zhang Y, Lovley DR. 2020. Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience 23:101794

doi: 10.1016/j.isci.2020.101794
[41]

Shen Y, Yu Y, Zhang Y, Urgun-Demirtas M, Yuan H, et al. 2021. Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge. Journal of Cleaner Production 278:123212

doi: 10.1016/j.jclepro.2020.123212
[42]

Lü C, Shen Y, Li C, Zhu N, Yuan H. 2020. Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste-activated sludge: beyond direct interspecies electron transfer. ACS Sustainable Chemistry & Engineering 8:12626−12636

doi: 10.1021/acssuschemeng.0c04109
[43]

Alam M, Dhillon SK, Ismail S, Dhar BR. 2025. Biochar and granular activated carbon mitigate polystyrene nanoplastics inhibition in dark biohydrogen fermentation of sludge. ACS ES&T Engineering 5:487−499

doi: 10.1021/acsestengg.4c00565
[44]

Valentin MT, Luo G, Zhang S, Białowiec A. 2023. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. Biotechnology for Biofuels and Bioproducts 16:146

doi: 10.1186/s13068-023-02391-3
[45]

Xu W, Wu L, Geng M, Zhou J, Bai S, et al. 2025. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: exploring electron transfer and biomolecular mechanisms. Environmental Research 268:120810

doi: 10.1016/j.envres.2025.120810
[46]

Chen L, Fang W, Chang J, Liang J, Zhang P, et al. 2022. Improvement of direct interspecies electron transfer via adding conductive materials in anaerobic digestion: mechanisms, performances, and challenges. Frontiers in Microbiology 13:860749

doi: 10.3389/fmicb.2022.860749
[47]

Bahrami M, Cruz IA, Silva IM, Ghislain T, Lavoie JM. 2025. Tailoring biochar properties for anaerobic digestion: enhancing performance under high organic loading. Bioresource Technology 438:133165

doi: 10.1016/j.biortech.2025.133165
[48]

Deng C, Lin R, Kang X, Wu B, Wall DM, et al. 2021. What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: a case study of digestion of whiskey by-products. Fuel 306:121736

doi: 10.1016/j.fuel.2021.121736
[49]

Zhang M, Wang Y. 2020. Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge: biomethane production, heavy metal speciation and performance stability. Bioresource Technology 313:123695

doi: 10.1016/j.biortech.2020.123695
[50]

Yuan HY, Ding LJ, Zama EF, Liu PP, Hozzein WN, et al. 2018. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environmental Science & Technology 52:12198−12207

doi: 10.1021/acs.est.8b04121
[51]

Guo K, Chang H, Nie Y, Zhu L, Tan L, et al. 2024. Distinct mechanisms on accelerating electron transfer to facilitate two-stage anaerobic digestion modulated by various microalgae biochar. ACS ES&T Engineering 4:966−977

doi: 10.1021/acsestengg.3c00520
[52]

Zhang C, Yang R, Sun M, Zhang S, He M, et al. 2022. Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis. Biochar 4:62

doi: 10.1007/s42773-022-00187-6
[53]

Wang G, Li Q, Gao X, Wang XC. 2019. Sawdust-derived biochar much mitigates VFAs accumulation and improves microbial activities to enhance methane production in thermophilic anaerobic digestion. ACS Sustainable Chemistry & Engineering 7:2141−2150

doi: 10.1021/acssuschemeng.8b04789
[54]

Cai Y, Zhu M, Meng X, Zhou JL, Zhang H, et al. 2022. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: a review. Bioresource Technology 351:126924

doi: 10.1016/j.biortech.2022.126924
[55]

Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, et al. 2024. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. Biotechnology for Biofuels and Bioproducts 17:145

doi: 10.1186/s13068-024-02592-4
[56]

Zhao X, Xu Y, Yin F, Li Y, Li X, et al. 2024. Co-Fe-N@biochar anode for improvment the electricity generation performance of microbial fuel cell. Environmental Technology 45:5048−5062

doi: 10.1080/09593330.2023.2283797
[57]

Mittal Y, Srivastava P, Kumar N, Kumar M, Singh SK, et al. 2023. Ultra-fast and low-cost electroactive biochar production for electroactive-constructed wetland applications: a circular concept for plant biomass utilization. Chemical Engineering Journal 452:138587

doi: 10.1016/j.cej.2022.138587
[58]

Zha Z, Zhang Z, Xiang P, Zhu H, Zhou B, et al. 2021. One-step preparation of eggplant-derived hierarchical porous graphitic biochar as efficient oxygen reduction catalyst in microbial fuel cells. RSC Advances 11:1077−1085

doi: 10.1039/D0RA09976G
[59]

Corona-Martínez DA, Martínez-Amador SY, Rodríguez-De la Garza JA, Laredo-Alcalá EI, Pérez-Rodríguez P. 2025. Recent advances in scaling up bioelectrochemical systems: a review. BioTech 14:8

doi: 10.3390/biotech14010008
[60]

Dhanda A, Raj R, Sathe SM, Dubey BK, Ghangrekar MM. 2023. Graphene and biochar-based cathode catalysts for microbial fuel cell: performance evaluation, economic comparison, environmental and future perspectives. Environmental Research 231:116143

doi: 10.1016/j.envres.2023.116143
[61]

Cheng P, Zhang Y, Li M, Ma H, Xu W, et al. 2024. Carbonaceous anodes and compatible exoelectrogens in high-performance microbial fuel cells: a review. ACS ES&T Engineering 4:488−505

doi: 10.1021/acsestengg.3c00512
[62]

Yang W, Chen S. 2020. Biomass-derived carbon for electrode fabrication in microbial fuel cells: a review. Industrial & Engineering Chemistry Research 59:6391−6404

doi: 10.1021/acs.iecr.0c00041
[63]

Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, et al. 2023. Application of biochar in microbial fuel cells: characteristic performances, electron-transfer mechanism, and environmental and economic assessments. Ecotoxicology and Environmental Safety 267:115643

doi: 10.1016/j.ecoenv.2023.115643
[64]

Prabakar P, Mustafa Mert K, Muruganandam L, Sivagami K. 2024. A comprehensive review on biochar for electrochemical energy storage applications: an emerging sustainable technology. Frontiers in Energy Research 12:1448520

doi: 10.3389/fenrg.2024.1448520
[65]

Yan J, Zhang M, Chen X, Chen C, Xu X, et al. 2024. Straw-derived macroporous biochar as high-performance anode in microbial fuel cells. Process Biochemistry 145:113−121

doi: 10.1016/j.procbio.2024.06.024
[66]

Wang G, Chen L, Xing Y, Sun C, Fu P, et al. 2023. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. Science of The Total Environment 904:166549

doi: 10.1016/j.scitotenv.2023.166549
[67]

Zhang S, Kong Z, Wang H, Yan Q, Vayenas DV, et al. 2022. Enhanced nitrate removal by biochar supported nano zero-valent iron (nZVI) at biocathode in bioelectrochemical system (BES). Chemical Engineering Journal 433:133535

doi: 10.1016/j.cej.2021.133535
[68]

Zhou P, Liu G, Wang H, Yan Q, Wu P. 2021. Electrochemical insight into the activated algal biochar assisted hydrogenotrophic denitrification at biocathode using bioelectrochemical system (BES). Process Biochemistry 103:60−64

doi: 10.1016/j.procbio.2021.02.008
[69]

Lam KL, Solon K, Jia M, Volcke EIP, van der Hoek JP. 2022. Life cycle environmental impacts of wastewater-derived phosphorus products: an agricultural end-user perspective. Environmental Science & Technology 56:10289−10298

doi: 10.1021/acs.est.2c00353
[70]

Buss W, Hilber I, Graham MC, Mašek O. 2022. Composition of PAHs in biochar and implications for biochar production. ACS Sustainable Chemistry & Engineering 10:6755−6765

doi: 10.1021/acssuschemeng.2c00952
[71]

Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, et al. 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology 46:2830−2838

doi: 10.1021/es203984k
[72]

Mayer P, Hilber I, Gouliarmou V, Hale SE, Cornelissen G, et al. 2016. How to determine the environmental exposure of PAHs originating from biochar. Environmental Science & Technology 50:1941−1948

doi: 10.1021/acs.est.5b05603
[73]

Yang Y, Wang J, Wang Z, Gao Y, Pignatello JJ. 2021. Abatement of polycyclic aromatic hydrocarbon residues in biochars by thermal oxidation. Environmental Science & Technology Letters 8:451−456

doi: 10.1021/acs.estlett.1c00167
[74]

Zhang C, Ji Y, Li C, Zhang Y, Sun S, et al. 2023. The application of biochar for CO2 capture: influence of biochar preparation and CO2 capture reactors. Industrial & Engineering Chemistry Research 62:17168−17181

doi: 10.1021/acs.iecr.3c00445
[75]

Gui X, Xu X, Zhang Z, Hu L, Huang W, et al. 2025. Biochar-amended soil can further sorb atmospheric CO2 for more carbon sequestration. Communications Earth & Environment 6:5

doi: 10.1038/s43247-024-01985-5
[76]

Frainetti AJ, Klinghoffer NB. 2024. Engineering biochar-supported nickel catalysts for efficient CO2 methanation. Biomass and Bioenergy 184:107179

doi: 10.1016/j.biombioe.2024.107179
[77]

Faggiano A, Cicatelli A, Guarino F, Castiglione S, Proto A, et al. 2025. Optimizing CO2 capture: effects of chemical functionalization on woodchip biochar adsorption performance. Journal of Environmental Management 380:125059

doi: 10.1016/j.jenvman.2025.125059
[78]

Tian W, Wang Y, Hao J, Guo T, Wang X, et al. 2022. Amine-modified biochar for the efficient adsorption of carbon dioxide in flue gas. Atmosphere 13:579

doi: 10.3390/atmos13040579
[79]

Wu P, Wang Y, Liu Y. 2024. Recent advances in heteroatom-doped porous carbon for adsorption of gaseous pollutants. Chemical Engineering Journal 491:152142

doi: 10.1016/j.cej.2024.152142
[80]

Li T, An X, Fu D. 2023. Review on nitrogen-doped porous carbon materials for CO2 adsorption and separation: recent advances and outlook. Energy & Fuels 37:8160−8179

doi: 10.1021/acs.energyfuels.3c00941
[81]

Zhang Y, Long S, Duret MT, Bullock LA, Lam P, et al. 2025. Modeling and feasibility assessment of mineral carbonation based on biological pH swing for atmospheric CO2 removal. ACS Sustainable Chemistry & Engineering 13:6972−6981

doi: 10.1021/acssuschemeng.4c10708
[82]

Hu L, Huang R, Zhou L, Qin R, He X, et al. 2023. Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard. Frontiers in Microbiology 14:1109272

doi: 10.3389/fmicb.2023.1109272
[83]

Roy S, Sreenivasan H, Sarmah AK, Baniasadi H, Bordoloi S. 2025. Recent advances for CO2 mineralization in biochar-amended cementitious composites. Resources, Conservation and Recycling 215:108141

doi: 10.1016/j.resconrec.2025.108141
[84]

Jedli H, Almonnef M, Rabhi R, Mbarek M, Abdessalem J, et al. 2024. Activated carbon as an adsorbent for CO2 capture: adsorption, kinetics, and RSM modeling. ACS Omega 9:2080−2087

doi: 10.1021/acsomega.3c02476
[85]

Khosrowshahi MS, Abdol MA, Mashhadimoslem H, Khakpour E, Emrooz HBM, et al. 2022. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports 12:8917

doi: 10.1038/s41598-022-12596-5
[86]

Li D, Sun L, He R, Xiao G, Zhu D, et al. 2024. Hierarchically porous MgO/biochar composites for efficient CO2 capture: structure, performance and mechanism. Chemical Engineering Journal 498:155607

doi: 10.1016/j.cej.2024.155607
[87]

Hanif A, Aziz MA, Helal A, Abdelnaby MM, Khan A, et al. 2023. CO2 adsorption on biomass-derived carbons from Albizia procera leaves: effects of synthesis strategies. ACS Omega 8:36228−36236

doi: 10.1021/acsomega.3c04693
[88]

Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, et al. 2020. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: effect of porous structure and surface chemistry. Science of The Total Environment 739:139845

doi: 10.1016/j.scitotenv.2020.139845
[89]

Xu X, Zheng Y, Gao B, Cao X. 2019. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal 368:564−572

doi: 10.1016/j.cej.2019.02.165
[90]

Zhang X, Zhang S, Yang H, Shi T, Chen Y, et al. 2013. Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. BioEnergy Research 6:1147−1153

doi: 10.1007/s12155-013-9304-9
[91]

Manyà JJ, González B, Azuara M, Arner G. 2018. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chemical Engineering Journal 345:631−639

doi: 10.1016/j.cej.2018.01.092
[92]

Guo Y, Tan C, Sun J, Li W, Zhang J, et al. 2020. Biomass ash stabilized MgO adsorbents for CO2 capture application. Fuel 259:1162989

doi: 10.1016/j.fuel.2019.116298
[93]

Zhang C, Song W, Ma Q, Xie L, Zhang X, et al. 2016. Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy & Fuels 30:4181−4190

doi: 10.1021/acs.energyfuels.5b02764
[94]

Wang R, Wang P, Yan X, Lang J, Peng C, et al. 2012. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Applied Materials & Interfaces 4:5800−5806

doi: 10.1021/am302077c
[95]

Chen J, Yang J, Hu G, Hu X, Li Z, et al. 2016. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chemistry & Engineering 4:1439−1445

doi: 10.1021/acssuschemeng.5b01425
[96]

Coromina HM, Walsh DA, Mokaya R. 2016. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A 4:280−289

doi: 10.1039/C5TA09202G
[97]

Deng S, Wei H, Chen T, Wang B, Huang J, Yu G. 2014. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chemical Engineering Journal 253:46−54

doi: 10.1016/j.cej.2014.04.115
[98]

Zhou Y, Sun M, Lin C. 2024. Study on the preparation of CdS/TiO2 corn straw biochar composite materials for photocatalytic reduction of CO2 and collaborative H2 production. Environmental Science and Pollution Research 31:48222−48232

doi: 10.1007/s11356-024-34282-x
[99]

Wang J, Guo RT, Bi ZX, Chen X, Hu X, et al. 2022. A review on TiO2−x-based materials for photocatalytic CO2 reduction. Nanoscale 14:11512−11528

doi: 10.1039/D2NR02527B
[100]

Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, et al. 2022. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. Biochar 4:45

doi: 10.1007/s42773-022-00173-y
[101]

Lourenço MAO, Zeng J, Jagdale P, Castellino M, Sacco A, et al. 2021. Biochar/zinc oxide composites as effective catalysts for electrochemical CO2 reduction. ACS Sustainable Chemistry & Engineering 9:5445−5453

doi: 10.1021/acssuschemeng.1c00837
[102]

Yang J, Gao G, Zhu Z, Yu X. 2022. Biochar modified Co–Al LDH for enhancing photocatalytic reduction CO2 performance and mechanism insight. Research on Chemical Intermediates 48:2313−2323

doi: 10.1007/s11164-022-04686-w
[103]

Yang P, Su X, Huang S, Zhong J, Li M. 2024. Juncus effuses biochar-assisted preparation of oxygen vacancies-rich BiOCl for photocatalytic degradation of pollutants and CO2 reduction. Materials Today Communications 41:110564

doi: 10.1016/j.mtcomm.2024.110564
[104]

Adegoke KA, Maxakato NW. 2022. Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: functionalities, mechanistic, and technoeconomic aspects. Materials Today Chemistry 24:100838

doi: 10.1016/j.mtchem.2022.100838
[105]

Wang T, Sheng H, Xi J, Zhao Y, Yuan B, et al. 2025. CO2 reduction by borohydride over modified biochar-loaded nickel-copper alloy at ambient temperature and atmospheric pressure. Journal of Alloys and Compounds 1010:177908

doi: 10.1016/j.jallcom.2024.177908
[106]

Liu W, Chen S, Mei Z, Li L, Li H, et al. 2024. Boron and nitrogen doping modulating the coordination environment of copper in biochar for reformative electrocatalytic CO2 reduction. Surfaces and Interfaces 44:103608

doi: 10.1016/j.surfin.2023.103608
[107]

Zhao W, Mei X, Zhang Y, Zhang Z, Chen K, et al. 2025. Electrified dry reforming of methane on Ni-La2O3–loaded activated carbon: a net CO2-negative reaction. Science Advances 11:eadv1585

doi: 10.1126/sciadv.adv1585
[108]

Wang Z, Lin S, Wang L, Qian J, He M, et al. 2025. Oxygen vacancy engineering for enhancing catalytic performance in CO2 hydrogenation: recent advances and future directions. ChemCatChem 17:e202402159

doi: 10.1002/cctc.202402159
[109]

Li X, Wang Y, Zhang G, Sun W, Bai Y, et al. 2019. Influence of Mg-promoted Ni-based catalyst supported on coconut shell carbon for CO2 methanation. ChemistrySelect 4:838−845

doi: 10.1002/slct.201803369
[110]

Xie L, Cai Y, Jiang Y, Shen M, Lam JCH, et al. 2024. Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning. Nature Communications 15:10386

doi: 10.1038/s41467-024-54590-7
[111]

Schlagenhauf L, Buerki-Thurnherr T, Kuo YY, Wichser A, Nüesch F, et al. 2015. Carbon nanotubes released from an epoxy-based nanocomposite: quantification and particle toxicity. Environmental Science & Technology 49:10616−10623

doi: 10.1021/acs.est.5b02750
[112]

Zhou A, Yu S, Deng S, Mikulčić H, Tan H, et al. 2023. Enrichment characteristics and environmental risk assessment of heavy metals in municipal sludge pyrolysis biochar. Journal of the Energy Institute 111:101417

doi: 10.1016/j.joei.2023.101417
[113]

Dai N, Mitch WA. 2014. Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO2 capture systems. Environmental Science & Technology 48:7519−7526

doi: 10.1021/es501864a
[114]

Terlouw T, Treyer K, Bauer C, Mazzotti M. 2021. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environmental Science & Technology 55:11397−11411

doi: 10.1021/acs.est.1c03263
[115]

Jiao C, You S, Lei Z, Zan F, Li Q, et al. 2025. Deciphering biochar-driven membrane fouling mitigation mechanisms in high-solids AnMBRs: a multi-perspective analysis using computational fluid dynamics and interface thermodynamics. Chemical Engineering Journal 516:164161

doi: 10.1016/j.cej.2025.164161
[116]

Yang K, Wang D, Yang Y, Pan Y, Wu M, et al. 2025. Cyanobacterial biochar modified ceramic membrane for in situ filtration and peroxymonosulfate activation: focusing on interface adjustment and enhanced anti-fouling. Environmental Science: Water Research & Technology 11:1163−1176

doi: 10.1039/D4EW01059K
[117]

Wang K, Ye Q, Shen Y, Wang Y, Hong Q, et al. 2023. Biochar addition in membrane bioreactor enables membrane fouling alleviation and nitrogen removal improvement for low C/N municipal wastewater treatment. Membranes 13(2):194

doi: 10.3390/membranes13020194
[118]

Yang X, Xia S, Hao L, Tian D, Wang L, et al. 2024. Deciphering the behavior and potential mechanism of biochar at different pyrolysis temperatures to alleviate membrane biofouling. Science of The Total Environment 924:171638

doi: 10.1016/j.scitotenv.2024.171638
[119]

Fionah A, Oluk I, Brady L, Byrne DM, Escobar IC. 2024. Performance and environmental assessment of biochar-based membranes synthesized from traditional and eco-friendly solvents. Membranes 14(7):153

doi: 10.3390/membranes14070153
[120]

He P, Zhang H, Duan H, Shao L, Lü F. 2020. Continuity of biochar-associated biofilm in anaerobic digestion. Chemical Engineering Journal 390:124605

doi: 10.1016/j.cej.2020.124605
[121]

Wang L, Liang L, Li N, Chen G, Guo H, et al. 2025. A mini-review of sludge-derived biochar (SDB) for wastewater treatment: recent advances in 2020–2025. Applied Sciences 15(11):6173

doi: 10.3390/app15116173
[122]

Ghaffar A, Zhu X, Chen B. 2018. Biochar composite membrane for high performance pollutant management: fabrication, structural characteristics and synergistic mechanisms. Environmental Pollution 233:1013−1023

doi: 10.1016/j.envpol.2017.09.099
[123]

Morales N, Mery-Araya C, Guerra P, Poblete R, Chacana-Olivares J, et al. 2024. Mitigation of membrane fouling in membrane bioreactors using granular and powdered activated carbon: an experimental study. Water 16(17):2556

doi: 10.3390/w16172556
[124]

Shao Y, Zhang X, Tan W, Zhao Y, Li F, et al. 2025. Mixed matrix membrane of Pebax-1657 incorporated with H2O2-modified ball-milled biochar for enhanced CO2 separation. Environmental Research 285:122302

doi: 10.1016/j.envres.2025.122302
[125]

Xiao L, Yu C, Liu M, Chen L, Xu H, et al. 2025. Enhancing the catalytic capacity of biochar-supported Cu(0) catalysts to endow PVDF composite membranes with self-cleaning property: performance evaluation and mechanistic study. Surfaces and Interfaces 72:107210

doi: 10.1016/j.surfin.2025.107210
[126]

Khalil AKA, Teow YH, Yoshizawa-Fujita M, Sobri Takriff M, Ahmad AL, et al. 2025. Capacitive deionization for sustainable water desalination: advances in electrode materials, mechanistic pathways, and system-level optimization. Journal of Environmental Chemical Engineering 13:118859

doi: 10.1016/j.jece.2025.118859
[127]

Li P, Feng T, Song Z, Tan Y, Luo W. 2020. Chitin derived biochar for efficient capacitive deionization performance. RSC Advances 10:30077−30086

doi: 10.1039/D0RA05554A
[128]

Chu M, Tian W, Zhao J, Zou M, Lu Z, et al. 2022. A comprehensive review of capacitive deionization technology with biochar-based electrodes: biochar-based electrode preparation, deionization mechanism and applications. Chemosphere 307:136024

doi: 10.1016/j.chemosphere.2022.136024
[129]

Huo B, Yan L, Li G, Rao P, Li T, et al. 2025. Plasma-modified activated biochar electrode for enhanced capacitive deionization: mechanism insight and performance. Journal of Environmental Chemical Engineering 13:120010

doi: 10.1016/j.jece.2025.120010
[130]

Lim J, Shin YU, Hong S. 2022. Enhanced capacitive deionization using a biochar-integrated novel flow-electrode. Desalination 528:115636

doi: 10.1016/j.desal.2022.115636
[131]

Li Y, Zhang W, Zhao L, Ma W, Wang S, et al. 2025. Nitrogen and sulfur co-doped cyanobacteria-derived biochar for efficient capacitive removal of Pb2+ from wastewater. Desalination 615:119241

doi: 10.1016/j.desal.2025.119241
[132]

Wen P, Lu J, Tian L, Liu S, Tahir N, et al. 2025. Environmental-friendly modification of porous biochar via K2FeO4 as a capacitive deionization electrode material. Environmental Research 285:122714

doi: 10.1016/j.envres.2025.122714
[133]

Park J, Lee J, Shim I, Koo JW, Nam SH, et al. 2025. Membrane capacitive deionization by spent coffee grounds electrodes for lithium recovery. Separation and Purification Technology 376:133994

doi: 10.1016/j.seppur.2025.133994
[134]

Kyaw HH, Al-Mashaikhi SM, Myint MTZ, Al-Harthi S, El-Shafey EI, et al. 2021. Activated carbon derived from the date palm leaflets as multifunctional electrodes in capacitive deionization system. Chemical Engineering and Processing - Process Intensification 161:108311

doi: 10.1016/j.cep.2021.108311
[135]

Yan H, Deng M, Qu K, Li Q, Huan C, et al. 2023. Utilization of peanut shells for the fabrication of high-performance activated carbon electrodes in capacitive deionization. Ionics 29:5111−5122

doi: 10.1007/s11581-023-05226-1
[136]

Qian M, Xuan XY, Pan LK, Gong SQ. 2019. Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization. Ionics 25:3443−3452

doi: 10.1007/s11581-019-02887-9
[137]

Hadebe L, Cele Z, Gumbi B. 2022. Properties of porous carbon electrode material derived from biomass of coffee waste grounds for capacitive deionization. Materials Today: Proceedings 56:2178−2183

doi: 10.1016/j.matpr.2021.11.496
[138]

Wang C, Adhikari S, Li Y, Wen M, Wang Y. 2025. Highly selective zinc ion removal by the synergism of functional groups and defects from N, S co-doped biochar. Separation and Purification Technology 354:129446

doi: 10.1016/j.seppur.2024.129446
[139]

Chang JY, Wang HY, Cuong DV, Hou CH. 2026. Self-N-doped hierarchical porous carbon electrodes derived from shrimp shells for high-performance membrane capacitive deionization. Desalination 618:119508

doi: 10.1016/j.desal.2025.119508
[140]

Zhang Z, Zhang W, Zhao L, Ma W, Li Y, et al. 2025. Synergistic N–P co-doped in biochar electrodes for enhanced capacitive deionization of norfloxacin: mechanistic insights from experimental and DFT studies. Desalination 615:119233

doi: 10.1016/j.desal.2025.119233
[141]

Mwalusambo G, Tarus B, Elisadiki J, Son M, Kim HH, et al. 2025. Ammonium removal from water using flow capacitive deionization with MgO-modified biochar derived from orange peels. Desalination 615:119312

doi: 10.1016/j.desal.2025.119312
[142]

Wang J, Sun L, Zhang S, Zhang Y, Zhang R, et al. 2025. One-step baking soda activation induces N, S-self-doped Ginkgo biloba-derived carbon for efficient chlorine removal. Journal of Environmental Chemical Engineering 13:118538

doi: 10.1016/j.jece.2025.118538
[143]

Zhao Z, Yan L, Li G, Rao P, Huo B, et al. 2025. Food waste biogas residue-derived composite biochar for effective Cu2+ removal by capacitive deionization. Journal of Environmental Chemical Engineering 13:117132

doi: 10.1016/j.jece.2025.117132
[144]

Panja E, Alfredy T, Elisadiki J, Jande YAC. 2025. Hermetia illucens pupae casings and biogas slurry activated carbon electrodes for Cd2 + removal from aqueous solutions using capacitive deionization. Desalination and Water Treatment 322:101118

doi: 10.1016/j.dwt.2025.101118
[145]

Qi B, Li Y, Li L, Zhao Z. 2025. Enhanced nickel removal by N, S co-doped hierarchical porous biochar in capacitive deionization process: performance and application. Chemical Engineering Journal 504:158686

doi: 10.1016/j.cej.2024.158686
[146]

Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. 2023. Electrode materials for desalination of water via capacitive deionization. Angewandte Chemie International Edition 62:e202302180

doi: 10.1002/anie.202302180