[1]

Tian J, Wang P, Zhu D. 2024. Overview of Chinese new energy vehicle industry and policy development. Green Energy and Resources 2(2):100075

doi: 10.1016/J.GERR.2024.100075
[2]

Guo LY, Feng C, Yu SQ. 2023. Connecting the stocks of major energy firms in China to identify the systemic risk. Energy Economics 126:107015

doi: 10.1016/J.ENECO.2023.107015
[3]

Jin Y, Hu S, Zhang Z, Zhu B, Bai D. 2022. The path to carbon neutrality in China: a paradigm shift in fossil resource utilization. Resources Chemicals and Materials 1:129−135

doi: 10.1016/j.recm.2022.01.003
[4]

Moosavian SF, Noorollahi Y, Shoaei M. 2024. Renewable energy resources utilization planning for sustainable energy system development on a stand-alone island. Journal of Cleaner Production 439:140892

doi: 10.1016/J.JCLEPRO.2024.140892
[5]

Akhlisah ZN, Ong HC, Lee HV, Tan YH. 2026. Environmental impacts of biomass energy: a life cycle assessment perspective for circular economy. Renewable and Sustainable Energy Reviews 226:116363

doi: 10.1016/J.RSER.2025.116363
[6]

Ma C, Hu J, Wang H, Yu Y, Tan C. 2026. Advances and challenges in biomass thermochemical conversion: from resource utilization to process optimization. Renewable and Sustainable Energy Reviews 226:116385

doi: 10.1016/J.RSER.2025.116385
[7]

Motasemi F, Afzal MT. 2013. A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews 28:317−330

doi: 10.1016/j.rser.2013.08.008
[8]

Begum YA, Kumari S, Jain SK, Garg MC. 2024. A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery. Environmental Science: Advances 3(9):1197−1216

doi: 10.1039/d4va00109e
[9]

Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, et al. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19−33

doi: 10.1016/j.chemosphere.2013.10.071
[10]

Mohan D, Sarswat A, Ok YS, Pittman CU Jr. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent − a critical review. Bioresource Technology 160:191−202

doi: 10.1016/j.biortech.2014.01.120
[11]

Tang Y, Lin X, Liao J, Tan J, He Y, et al. 2025. All-rice straw-derived self-supporting biochar to construct an ecological supercapacitor. Industrial Crops and Products 231:121220

doi: 10.1016/j.indcrop.2025.121220
[12]

Ajala EO, Ighalo JO, Ajala MA, Adeniyi AG, Ayanshola AM. 2021. Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing 8:87

doi: 10.1186/S40643-021-00440-Z
[13]

Bouaik H, Madihi S, El Harfi M, Khiraoui A, Aboulkas A, et al. 2025. Pyrolysis of macroalgal biomass: a comprehensive review on bio-oil, biochar, and biosyngas production. Sustainable Chemistry One World 5:100050

doi: 10.1016/j.scowo.2025.100050
[14]

Rambhatla N, Panicker TF, Mishra RK, Manjeshwar SK, Sharma A. 2025. Biomass pyrolysis for biochar production: study of kinetics parameters and effect of temperature on biochar yield and its physicochemical properties. Results in Engineering 25:103679

doi: 10.1016/j.rineng.2024.103679
[15]

Wang F, Jia Z, Zhu Y, Zhang T, Cheng J, et al. 2025. Preparation of high specific surface area porous carbon from waste bamboo fiber for high performance supercapacitors. Biomass and Bioenergy 202:108253

doi: 10.1016/j.biombioe.2025.108253
[16]

Li S, Han K, Li J, Li M, Lu C. 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials 243:291−300

doi: 10.1016/j.micromeso.2017.02.052
[17]

Wang Y, Guo W, Chen W, Xu G, Zhu G, et al. 2024. Co-production of porous N-doped biochar and hydrogen-rich gas production from simultaneous pyrolysis-activation-nitrogen doping of biomass: synergistic mechanism of KOH and NH3. Renewable Energy 229:120777

doi: 10.1016/j.renene.2024.120777
[18]

Li F, Sun D, Zha Z, Yang K, Ge Z, et al. 2023. Numerical simulation of the coupled multiphysics fields and reactions during the microwave pyrolysis of wood particles. Energy 283:128493

doi: 10.1016/j.energy.2023.128493
[19]

Zhang Y, Zhao W, Li B, Xie G. 2018. Microwave-assisted pyrolysis of biomass for bio-oil production: a review of the operation parameters. Journal of Energy Resources Technology 140:040802

doi: 10.1115/1.4039604
[20]

Zhang X, Rajagopalan K, Lei H, Ruan R, Sharma BK. 2017. An overview of a novel concept in biomass pyrolysis: microwave irradiation. Sustainable Energy & Fuels 1:1664−1699

doi: 10.1039/c7se00254h
[21]

Fang H, Hai L, Xie R, Yuan J, Zhang Q. 2024. Progress in the study of microwave pyrolysis technology and its influencing factors. Journal of Materials Science and Chemical Engineering 12(10):30−61

doi: 10.4236/MSCE.2024.1210004
[22]

Sahoo D, Remya N. 2022. Influence of operating parameters on the microwave pyrolysis of rice husk: biochar yield, energy yield, and property of biochar. Biomass Conversion and Biorefinery 12(8):3447−3456

doi: 10.1007/s13399-020-00914-8
[23]

Quillope JCC, Carpio RB, Gatdula KM, Detras MCM, Doliente SS. 2021. Optimization of process parameters of self-purging microwave pyrolysis of corn cob for biochar production. Heliyon 7(11):e08417

doi: 10.1016/J.HELIYON.2021.E08417
[24]

Cheng S, Zhang L, Xia H, Peng J, Zhang S, et al. 2015. Preparation of high specific surface area activated carbon from walnut shells by microwave-induced KOH activation. Journal of Porous Materials 22:1527−1537

doi: 10.1007/s10934-015-0035-5
[25]

Chen L, Mi B, He J, Li Y, Zhou Z, et al. 2023. Functionalized biochars with highly-efficient malachite green adsorption property produced from banana peels via microwave-assisted pyrolysis. Bioresource Technology 376:128840

doi: 10.1016/J.BIORTECH.2023.128840
[26]

Yagmur E, Ozmak M, Aktas Z. 2008. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 87:3278−3285

doi: 10.1016/j.fuel.2008.05.005
[27]

Qiu T, Li C, Zhao W, Naz MY, Zhang Y. 2025. Microwave-assisted pyrolysis of biomass: influence of feedstock and pyrolysis parameters on porous biochar properties. Biomass and Bioenergy 193:107583

doi: 10.1016/J.BIOMBIOE.2024.107583
[28]

Cui L, Zhao W, Mostafa E, Zhang Y. 2024. Heating performances of corn straw particle with/without SiC particle in a microwave chamber. Environmental Science and Pollution Research International 31(46):57533−57541

doi: 10.1007/S11356-023-30375-1
[29]

Zhao W, Zhang Y, Sun C, Li L, Li B, et al. 2025. Thermodynamic analysis of a transcritical CO2 heat pump for heating applications. Energy 318:134896

doi: 10.1016/J.ENERGY.2025.134896
[30]

Khan W, Khan S, Algehyne EA, Saeed T, Alzubaidi MM, et al. 2025. Sensitivity analysis of temperature, velocity, and density distribution of nanofluid flow in a nanochannel: a combined study of molecular dynamics and statistical response surface methodology. Journal of Molecular Liquids 439:128776

doi: 10.1016/J.MOLLIQ.2025.128776
[31]

Herrero MA, Kremsner JM, Kappe CO. 2008. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. The Journal of Organic Chemistry 73:36−47

doi: 10.1021/jo7022697
[32]

Shazman A, Mizrahi S, Cogan U, Shimoni E. 2007. Examining for possible non-thermal effects during heating in a microwave oven. Food Chemistry 103:444−453

doi: 10.1016/j.foodchem.2006.08.024
[33]

Bichot A, Lerosty M, Radoiu M, Méchin V, Bernet N, et al. 2020. Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Conversion and Management 203:112220

doi: 10.1016/j.enconman.2019.112220
[34]

Zhai C, Teng N, Pan B, Chen J, Liu F, et al. 2018. Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving. Carbohydrate Polymers 197:414−421

doi: 10.1016/j.carbpol.2018.06.031